Background The petrous part of the temporal bone plays a crucial role in various cranial surgical approaches, particularly those involving the middle cranial fossa. Understanding the morphometry of this region is essential for minimizing intraoperative risks and enhancing surgical outcomes. This study aims to provide a detailed morphometric analysis of the petrous bone and its anatomical landmarks in an Indian population, addressing a gap in the literature.
View Article and Find Full Text PDFObjective: To study the effect of cochlear implant age and duration of the intervention (auditory rehabilitation post-cochlear implantation) on ESRT in children with cochlear implants.
Methods: A total of 90 pre-lingual cochlear implant users were included. For the measurement of ESRTs the recipient's processor was connected to the programming pod and electrode numbers 22, 11 and 3 (apical, middle and basal), respectively, were activated to give stimulation sequentially and elicit deflection as a response.
Anticancer Agents Med Chem
October 2022
Background: Cancer is a life-threatening disease. Anti-cancer drugs are the focus of research. The heterocyclic molecules like benzimidazole occupy a central position in searching for novel and effective anti-cancer drugs.
View Article and Find Full Text PDFIn this investigation, biodegradable composites were fabricated with polycaprolactone (PCL) matrix reinforced with pine cone powder (15%, 30%, and 45% by weight) and compatibilized with graphite powder (0%, 5%, 10%, and 15% by weight) in polycaprolactone matrix by compression molding technique. The samples were prepared as per ASTM standard and tested for dimensional stability, biodegradability, and fracture energy with scanning electron micrographs. Water-absorption and thickness-swelling were performed to examine the dimensional stability and tests were performed at 23 °C and 50% humidity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a multifactorial disorder characterized by cognitive deficit and memory loss. The pathological feature of the disease involves β-amyloid senile plaques, reduced levels of acetylcholine neurotransmitter, oxidative stress and neurofibrillary tangles formation within the brain of AD patients. The present study aims to screen the inhibitory activity of newly synthesized and existing novel 4-methylthiocoumarin derivative against acetylcholinesterase, butyrylcholinesterase, BACE1, β-amyloid aggregation and oxidative stress involved in the AD pathogenesis.
View Article and Find Full Text PDFBackground: Several human diseases like Parkinson's, Alzheimer's disease, and systemic amyloidosis are associated with the misfolding and aggregation of protein molecules.
Objective: The present study demonstrated the comparison of 4-methyl coumarin and 4-methylthiocoumarin derivative for their anti-amyloidogenic and disaggregation activities. The hen egg-white lysozyme is used as a model system to study protein aggregation and disaggregation under in vitro conditions.
The current research work has potential for delivery of fluvoxamine moiety in bio-nanosuspension mode for the effective treatment of depression. Depression is a mood disorder characterized by persistently low mood and a feeling of sadness and loss of interest. The fluvoxamine loaded bio-nanosuspension was prepared using novel bio-retardant isolated from fruit pulp of by a novel method with different ratios (1:1, 1:2, 1:3, 1:4, 1:5) and the same ratios with standard polymer eudragit L-100.
View Article and Find Full Text PDFDepression is one of the most frequent psychiatric and potentially life-threatening disorders. This research work can offer a potential for delivery of selegiline moiety via ocular route in bio-nanosuspension mode for the effective management of depression after preclinical performance screening. The selegiline-loaded bio-nanosuspension was prepared using novel bio-retardant isolated from fruit pulp of (Sapodilla) by sonication solvent evaporation method with different ratios (0.
View Article and Find Full Text PDFCrit Rev Biotechnol
December 2017
Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market.
View Article and Find Full Text PDFThe length of electron bunches in a storage ring is an important parameter for both synchrotron radiation users and accelerator physicists. Several methods are used for measurements of bunch length using electronic and optical instruments. We have measured temporal profile of synchrotron radiation emitted from dipole magnet of Indus-1 by using fast photodiode.
View Article and Find Full Text PDFNutritional and energy value of an underutilized wild edible Viburnum mullaha was determined. Vitamin analysis confirmed that the fruit contains high amounts of vitamin C (122.27 mg/100 g), vitamin B2 (0.
View Article and Find Full Text PDFA rapid, effective and ecofriendly method for sensitive screening and quantification of 72 pesticides residue in fruits and vegetables, by microwave-assisted extraction (MAE) followed by dispersive solid-phase extraction (d-SPE), retention time locked (RTL) capillary gas-chromatographic separation in trace ion mode mass spectrometric determination has been validated as per ISO/IEC: 17025:2005. Identification and reporting with total and extracted ion chromatograms were facilitated to a great extent by Deconvolution reporting software (DRS). For all compounds LOD were 0.
View Article and Find Full Text PDFOur earlier investigations have identified a unique enzyme in the endoplasmic reticulum (ER) termed Acetoxy Drug: Protein Transacetylase (TAase) catalyzing the transfer of acetyl group from polyphenolic acetates (PA) to certain receptor proteins (RP). An elegant assay procedure for TAase was developed based on the inhibition of glutathione S-transferase (GST) due to acetylation by a model acetoxycoumarin, 7, 8-Diacetoxy-4-methylcoumarin (DAMC). TAase purified from various mammalian tissue microsomes to homogeneity exhibited a molecular weight (M.
View Article and Find Full Text PDFOur earlier investigations demonstrated the remarkable activation of cytochrome P-450 reductase and nitric oxide synthase by 7,8-diacetoxy-4-methylcoumarin, a model polyphenolic acetate by way of acetylation, catalyzed by the Calreticulin. Protein acetyltransferase action of Calreticulin was hence termed Calreticulin transacetylase (CRTAase). Nitric oxide synthase and nitrite reductase are now considered as parts of nitric oxide cycle.
View Article and Find Full Text PDFOur earlier investigations identified acetoxy drug: protein transacetylase (TAase), a unique enzyme in the endoplasmic reticulum (ER) catalyzing the transfer of acetyl groups from polyphenolic acetates (PA) to certain functional proteins. Recently we have established the identity of TAase with ER protein calreticulin (CR) and subsequently transacetylase function of CR was termed calreticulin transacetylase (CRTAase). CRTAase was purified and characterized from human placenta.
View Article and Find Full Text PDFThe Transacetylase function of Calreticulin (CR) catalyzing the transfer of acetyl groups from acetoxycoumarins (AC) to certain proteins was identified for the first time in our laboratory. Protein acetyltransferase action of CR was termed Calreticulin Transacetylase (CRTAase). In the present work, CRTAase of rat tracheal smooth muscle cells (TSMC) was characterized with respect to the specificity for various AC and its role in the activation of nitric oxide synthase (NOS).
View Article and Find Full Text PDFWe have earlier shown that a unique membrane-bound enzyme mediates the transfer of acetyl group(s) from polyphenolic peracetates (PA) to functional proteins, which was termed acetoxy drug: protein transacetylase (TAase) because it acted upon several classes of PA. Here, we report the purification of TAase from human placental microsomes to homogeneity with molecular mass of 60 kDa, exhibiting varying degrees of specificity to several classes of PA confirming the structure-activity relationship for the microsome-bound TAase. The TAase catalyzed protein acetylation by a model acetoxy drug, 7,8-diacetoxy-4-methyl coumarin (DAMC) was established by the demonstration of immunoreactivity of the acetylated target protein with anti-acetyl lysine antibody.
View Article and Find Full Text PDFEarlier observations carried out in our laboratory highlighted the mode of action of acetoxy 4-methylcoumarins and quercetin pentaacetate in preventing the genotoxicity of aflatoxin B1 (AFB1). We have extended the observation to an acetoxy biscoumarin i.e.
View Article and Find Full Text PDFThe earlier work carried out in our laboratory led to the identification of a novel rat liver microsomal enzyme termed as acetoxy drug: protein transacetylase (TAase), catalyzing the transfer of acetyl group from polyphenolic acetates (PA) to functional proteins. In this paper, we have reported the comparison of the specificities of acetoxy derivatives of coumarins, biscoumarins, chromones, flavones, isoflavones and xanthones with special reference to the phenyl moiety/bulky group on the pyran ring of PA. The results clearly indicated that compounds having phenyl moieties, when used as the substrates, resulted in a significant reduction of TAase catalyzed activity.
View Article and Find Full Text PDFAn enhanced intracellular level of Nitric oxide (NO) is essential to ameliorate several pathological conditions of heart and vasculature necessitating the activation of NOS. We have projected in this report the acetylation of eNOS by polyphenolic peracetates (PA) catalyzed by the novel enzyme acetoxy drug: protein transacetylase (TAase) discovered in our laboratory as an unambiguous way of activating NOS which results in the manifestation of physiological action. The human platelet was chosen as the experimental system in order to validate the aforementioned proposition.
View Article and Find Full Text PDFIn the mice, instillation of influenza virus A/Udorn/317/72(H3N2) intranasally resulted in a significant decrease in the pulmonary concentrations of catalase, reduced glutathione, and superoxide dismutase. There was a decrease in vitamin E level also. These effects were observed on the 5th day after viral instillation.
View Article and Find Full Text PDFThe six novel 4-methylcoumarins bearing different functionalities such as amino, hydroxy, N-acetyl, acetoxy and nitro have been synthesized and confirmed on the basis of their spectral data (1H-, 13C-NMR, UV, IR and EI mass). They were examined for the first time for their effect on NADPH dependent liver microsomal lipid peroxidation in vitro, and the results were compared with other model 4-methylcoumarin derivatives to establish the structure-activity relationship. Our studies demonstrated that amino group is an effective substitute for the hydroxyl group for antioxidant property and produced a dramatic inhibition of lipid peroxidation.
View Article and Find Full Text PDFThe quantitative structure-activity relationship (QSAR) studies conducted by us earlier revealed the cardinal role of the pyran ring carbonyl group in the acetoxy polyphenolic compounds for the acetoxy polyphenol:protein transacetylase (TAase) activity. Hence, an attempt was made to examine whether such substrate analogues of benzopyran acetates which lack in the pyran ring carbonyl group, such as 7-acetoxy-2,3-dihydro-2,2-dimethylbenzopyran (BPA), cetachin pentaacetate (CPA) and hematoxylin pentaacetate (HPA) could inhibit the 7,8-diacetoxy-4-methylcoumarin (DAMC):protein (glutathione-S-transferase) transacetylase activity. These compounds were indeed found to remarkably inhibit the TAase activity in a concentration dependent manner and exerted their inhibitory action very rapidly.
View Article and Find Full Text PDFThe evidences for the possible enzymatic transfer of acetyl groups (catalyzed by a transacetylase localized in microsomes) from an acetylated compound (acetoxy-4-methylcoumarins) to enzyme proteins leading to profound modulation of their catalytic activities was cited in our earlier publications in this series. The investigations on the specificity for transacetylase (TA) with respect to the number and positions of acetoxy groups on the benzenoid ring of coumarin molecule revealed that acetoxy groups in proximity to the oxygen heteroatom (at C-7 and C-8 positions) demonstrate a high degree of specificity to TA. These studies were extended to the action of TA on acetates of other polyphenols, such as flavonoids and catechin with a view to establish the importance of pyran carbonyl group for the catalytic activity.
View Article and Find Full Text PDF