Publications by authors named "Tyagi Neelam"

Purpose: Multiparametric magnetic resonance imaging (MRI) is known to provide predictors for malignancy and treatment outcome. The inclusion of these datasets in workflows for online adaptive planning remains under investigation. We demonstrate the feasibility of longitudinal relaxometry in online MR-guided adaptive stereotactic body radiotherapy (SBRT) to the prostate and dominant intra-prostatic lesion (DIL).

View Article and Find Full Text PDF

Background And Purpose: Patients with cardiac implantable electronic devices (CIED patients) are often ineligible for online magnetic resonance-guided radiotherapy (MRgRT), most likely due to the absence of established guidelines. Existing radiotherapy (RT) and magnetic resonance imaging (MRI) guidelines offer an opportunity to construct MRgRT protocols, promoting equitable access. Our objective was to present such a workflow, share multi-institutional experiences treating CIED patients with MRgRT on a 1.

View Article and Find Full Text PDF

Background And Purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac.

View Article and Find Full Text PDF

Purpose: Develop a true real-time implementation of MR signature matching (MRSIGMA) for free-breathing 3D MRI with sub-200 ms latency on the Elekta Unity 1.5T MR-Linac.

Methods: MRSIGMA was implemented on an external computer with a network connection to the MR-Linac.

View Article and Find Full Text PDF

Purpose: Postmastectomy radiation therapy is a mainstay in the adjuvant treatment of node-positive breast cancer, but it poses risks for women with breast reconstruction. Multibeam intensity-modulated radiation therapy improves dose conformality and homogeneity, potentially reducing complications in breast cancer patients with implant-based reconstruction. To investigate this hypothesis, we conducted a single-arm phase 2 clinical trial of breast cancer patients who underwent mastectomy/axillary dissection and prosthesis-based reconstruction.

View Article and Find Full Text PDF

. To develop real-time 4D MRI using MR signature matching (MRSIGMA) for volumetric motion imaging in patients with pancreatic cancer on a 1.5T MR-Linac system.

View Article and Find Full Text PDF

Background And Purpose: The apparent diffusion coefficient (ADC), a potential imaging biomarker for radiotherapy response, needs to be reproducible before translation into clinical use. The aim of this study was to evaluate the multi-centre delineation- and calculation-related ADC variation and give recommendations to minimize it.

Materials And Methods: Nine centres received identical diffusion-weighted and anatomical magnetic resonance images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, pancreas, and prostate).

View Article and Find Full Text PDF

Background: Adaptive radiation treatment (ART) for locally advanced pancreatic cancer (LAPC) requires consistently accurate segmentation of the extremely mobile gastrointestinal (GI) organs at risk (OAR) including the stomach, duodenum, large and small bowel. Also, due to lack of sufficiently accurate and fast deformable image registration (DIR), accumulated dose to the GI OARs is currently only approximated, further limiting the ability to more precisely adapt treatments.

Purpose: Develop a 3-D Progressively refined joint Registration-Segmentation (ProRSeg) deep network to deformably align and segment treatment fraction magnetic resonance images (MRI)s, then evaluate segmentation accuracy, registration consistency, and feasibility for OAR dose accumulation.

View Article and Find Full Text PDF

Background: Dose escalation radiotherapy enables increased control of prostate cancer (PCa) but requires segmentation of dominant index lesions (DIL). This motivates the development of automated methods for fast, accurate, and consistent segmentation of PCa DIL.

Purpose: To construct and validate a model for deep-learning-based automatic segmentation of PCa DIL defined by Gleason score (GS) ≥3+4 from MR images applied to MR-guided radiation therapy.

View Article and Find Full Text PDF

Background: Gastrointestinal (GI) tract motility is one of the main sources for intra/inter-fraction variability and uncertainty in radiation therapy for abdominal targets. Models for GI motility can improve the assessment of delivered dose and contribute to the development, testing, and validation of deformable image registration (DIR) and dose-accumulation algorithms.

Purpose: To implement GI tract motion in the 4D extended cardiac-torso (XCAT) digital phantom of human anatomy.

View Article and Find Full Text PDF

MRI-linear accelerator (MR-linac) devices have been introduced into clinical practice in recent years and have enabled MR-guided adaptive radiation therapy (MRgART). However, by accounting for anatomical changes throughout radiation therapy (RT) and delivering different treatment plans at each fraction, adaptive radiation therapy (ART) highlights several challenges in terms of calculating the total delivered dose. Dose accumulation strategies-which typically involve deformable image registration between planning images, deformable dose mapping, and voxel-wise dose summation-can be employed for ART to estimate the delivered dose.

View Article and Find Full Text PDF

Introduction: Single-agent monoclonal antibody therapy against programmed death-ligand 1 (PD-L1) has modest effects in malignant pleural mesothelioma. Radiation therapy can enhance the antitumor effects of immunotherapy. Nevertheless, the safety of combining anti-PD-L1 therapy with stereotactic body radiation therapy (SBRT) is unknown.

View Article and Find Full Text PDF

Introduction: Using an magnetic resonance linear accelerator (MR-Linac) may improve the precision of visible tumor boosting with ultra-hypofractionation by accounting for daily positional changes in the target and organs at risk (OAR).

Patients And Methods: Fifteen patients with prostate cancer and an MR-detected dominant lesion were treated on the MR-Linac with stereotactic body radiation (SBRT) to 40 Gy in 5 fractions, boosting the gross tumor volume (GTV) to 45 Gy with daily adaptive planning. Imaging was acquired again after initial planning (verification scan), and immediately after treatment (post-treatment scan).

View Article and Find Full Text PDF

Vision transformers efficiently model long-range context and thus have demonstrated impressive accuracy gains in several image analysis tasks including segmentation. However, such methods need large labeled datasets for training, which is hard to obtain for medical image analysis. Self-supervised learning (SSL) has demonstrated success in medical image segmentation using convolutional networks.

View Article and Find Full Text PDF
Article Synopsis
  • New technologies like the adapt-to-position (ATP) workflow on the Unity MR-Linac enhance daily treatment by adapting to variations but complicate the workflow, necessitating effective risk assessment to prevent errors.* -
  • A failure modes and effects analysis (FMEA) was conducted as part of a quality management program, involving a multidisciplinary team to identify and address potential failures in the ATP treatment workflow.* -
  • Implementing mitigations for high-ranking failure modes improved the workflow's robustness, demonstrating the importance of proactive evaluations in clinical settings.*
View Article and Find Full Text PDF

Purpose: Ablative radiation therapy (A-RT) appears to improve outcomes in locally advanced pancreatic cancer (LAPC) yet requires solutions for respiratory and digestive motion. We report outcomes of A-RT for pancreatic cancer using 1.5 T MR-adaptive treatment delivery.

View Article and Find Full Text PDF

Purpose: Commercial independent monitor unit (IMU) check systems for high-magnetic-field MR-guided radiation therapy (RT) systems are lacking. We investigated the feasibility of adopting an existing treatment planning system (TPS) as an IMU check for online adaptive radiotherapy using 1.5-Tesla MR-Linac.

View Article and Find Full Text PDF

Purpose: To describe and report longitudinal quality assurance (QA) measurements for the magnetic resonance imaging (MRI) component of the Elekta Unity MR-linac during the first year of clinical use in our institution.

Materials And Methods: The performance of the MRI component of Unity was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor image uniformity, signal-to-noise ratio (SNR), resolution/detectability, slice position/thickness, linearity, central frequency, and geometric accuracy.

View Article and Find Full Text PDF

Background And Purpose: Stereotactic body radiation therapy (SBRT) of locally advanced pancreatic cancer (LAPC) is challenging due to significant motion of gastrointestinal (GI) organs. The goal of our study was to quantify inter and intrafraction deformations and dose accumulation of upper GI organs in LAPC patients.

Materials And Methods: Five LAPC patients undergoing five-fraction magnetic resonance-guided radiation therapy (MRgRT) using abdominal compression and daily online plan adaptation to 50 Gy were analyzed.

View Article and Find Full Text PDF

Purpose: The goal of this study was to evaluate the use of EBT-XD film for SRS/SBRT commissioning in a 1.5T hybrid MR-Linac (MRL).

Method: The output factors (S), from 1x1, 2x2, 3x3 cm, were measured with film in solid water.

View Article and Find Full Text PDF

Introduction: To investigate the impact of partial lateral scatter (LS), backscatter (BS) and presence of air gaps on optically stimulated luminescence dosimeter (OSLD) measurements in an acrylic miniphantom used for dosimetry audit on the 1.5 T magnetic resonance-linear accelerator (MR-linac) system.

Methods: The following irradiation geometries were investigated using OSLDs, A26 MR/A12 MR ion chamber (IC), and Monaco Monte Carlo system: (a) IC/OSLD in an acrylic miniphantom (partial LS, partial BS), (b) IC/OSLD in a miniphantom placed on a solid water (SW) stack at a depth of 1.

View Article and Find Full Text PDF

Purpose: To assess the effect of a combination of compressed sensing and SENSitivity Encoding (SENSE) acceleration techniques on radiation therapy magnetic resonance imaging (MRI) simulation workflows.

Methods And Materials: Thirty-seven acquisitions were performed with both SENSE-only (SENSE) and combined compressed sensing and SENSE (CS) techniques in 24 patients receiving radiation therapy MRI simulation for a wide range of disease sites. The anatomic field of view prescription and image resolution were identical for both SENSE and CS acquisitions to ensure fair comparison.

View Article and Find Full Text PDF

. MR SIGnature MAtching (MRSIGMA) is a real-time volumetric MRI technique to image tumor and organs at risk motion in real-time for radiotherapy applications, where a dictionary of high-resolution 3D motion states and associated motion signatures are computed first during offline training and real-time 3D imaging is performed afterwards using fast signature-only acquisition and signature matching. However, the lack of a reference image with similar spatial resolution and temporal resolution introduces significant challenges forvalidation.

View Article and Find Full Text PDF

Purpose: To describe and report longitudinal quality assurance (QA) measurements for the mechanical and dosimetric performance of an Elekta Unity MR-linac during the first year of clinical use in our institution.

Materials And Methods: The mechanical and dosimetric performance of the MR-linac was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor the size of the radiation isocenter, the MR-to-MV isocenter concordance, MLC and jaw position, the accuracy and reproducibility of step-and-shoot delivery, radiation output and beam profile constancy, and patient-specific QA for the first 50 treatments in our institution.

View Article and Find Full Text PDF

Background And Purpose: Stereotactic body radiation therapy delivered using MR-guided radiotherapy (MRgRT) and automatic breathold gating has shown to improve overall survival for locally advanced pancreatic cancer (LAPC) patients. The goal of our study was to evaluate feasibility of treating LAPC patients using abdominal compression (AC) and impact of potential intrafraction motion on planned dose on a 1.5T MR-linac.

View Article and Find Full Text PDF