Background: Thrombin is produced by the prothrombinase complex, composed of factor (f)Xa and fVa on a phospholipid (PL) membrane surface. Snakes of the Elapidae family have venom versions of these factors that cause coagulopathy in prey. Group C venoms contain both fⅩa and fⅤa orthologues.
View Article and Find Full Text PDFAnticoagulation therapy is a mainstay of the treatment of thrombotic disorders; however, conventional anticoagulants trade antithrombotic benefits for bleeding risk. Factor (f) XI deficiency, known as hemophilia C, rarely causes spontaneous bleeding, suggesting that fXI plays a limited role in hemostasis. In contrast, individuals with congenital fXI deficiency display a reduced incidence of ischemic stroke and venous thromboembolism, indicating that fXI plays a role in thrombosis.
View Article and Find Full Text PDFActivated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer's disease, sepsis, multiple sclerosis, and COVID-19.
View Article and Find Full Text PDFBackground: The genetically engineered, humanized, bispecific monoclonal antibody emicizumab (Hemlibra) that mimics the cofactor activity of activated factor VIII (FVIII) has been approved for treatment of hemophilia A patients with and without inhibitor. In the pivotal premarketing clinical trials, emicizumab prophylaxis significantly reduced bleeding rates compared with previous treatments and was well tolerated. However, a consequence of this novel therapy may be the host immune response to a foreign protein.
View Article and Find Full Text PDFHemophilia is a bleeding disorder caused by deficiency in factors VIII or IX, the two components of the intrinsic Xase complex. Treatment with replacement factor can lead to the development of inhibitory antibodies, requiring the use of bypassing agents such as factor VIIa and factor concentrates. An alternative approach to bypass the Xase complex is to inhibit endogenous anticoagulant activities.
View Article and Find Full Text PDFProthrombin is activated to thrombin by the prothrombinase complex through sequential cleavage at two distinct sites. This occurs at sites of vascular injury in a highly regulated cascade of serine protease and cofactor activation, where activated platelets provide a suitable surface for protease/cofactor/substrate assembly. The precise structural and conformational changes undergone during the transition from prothrombin to thrombin have been studied for decades, and several structures of prothrombin fragments along the activation pathway have been solved.
View Article and Find Full Text PDFThe prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association.
View Article and Find Full Text PDFSynthesis of sulfated and unsulfated (glyco)peptide fragments of Hirudin P6 (a potent anticoagulant from the leech Hirudinaria manillensis) is described. The effect of O-glycosylation and tyrosine sulfation on thrombin binding and peptidolytic activity was investigated, together with the inhibition of fibrinogen cleavage.
View Article and Find Full Text PDFThrombin uses three principal sites, the active site, exosite I, and exosite II, for recognition of its many cofactors and substrates. It is synthesized in the zymogen form, prothrombin, and its activation at the end of the blood coagulation cascade results in the formation of the active site and exosite I and the exposure of exosite II. The physiological inhibitors of thrombin are all serpins, whose mechanism involves significant conformational change in both serpin and protease.
View Article and Find Full Text PDFProtein C inhibitor (PCI) is a serpin with many roles in biology, including a dual role as pro- and anticoagulant in blood. The protease specificity and local function of PCI depend on its interaction with cofactors such as heparin-like glycosaminoglycans (GAGs) and thrombomodulin (TM). Both cofactors significantly increase the rate of thrombin inhibition, but GAGs serve to promote the anticoagulant activity of PCI, and TM promotes its procoagulant function.
View Article and Find Full Text PDFProtein C inhibitor (PCI) is a multifunctional serpin with wide ranging protease inhibitory functions, unique cofactor binding activities, and potential non-inhibitory functions akin to the hormone-transporting serpins. To gain insight into the molecular mechanisms utilized by PCI we developed a robust expression system in Escherichia coli and solved the crystal structure of PCI in its native state. The five monomers obtained from our two crystal forms provide an NMR-like ensemble revealing regions of inherent flexibility.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
August 2006
Precise modulation of thrombin activity throughout the hemostatic response is essential for efficient cessation of bleeding while preventing inappropriate clot growth or dissemination which causes thrombosis. Regulating thrombin activity is made difficult by its ability to diffuse from the surface on which it was generated and its ability to cleave at least 12 substrates. To overcome this challenge, thrombin recognition of substrates is largely controlled by cofactors that act by localizing thrombin to various surfaces, blocking substrate binding to critical exosites, engendering new exosites for substrate recognition and by allosterically modulating the properties of the active site of thrombin.
View Article and Find Full Text PDFRegulation of blood coagulation is critical for maintaining blood flow, while preventing excessive bleeding or thrombosis. One of the principal regulatory mechanisms involves heparin activation of the serpin antithrombin (AT). Inhibition of several coagulation proteases is accelerated by up to 10,000-fold by heparin, either through bridging AT and the protease or by inducing allosteric changes in the properties of AT.
View Article and Find Full Text PDFRegulation of thrombin activity is critical for haemostasis and the prevention of thrombosis. Thrombin has several procoagulant substrates, including fibrinogen and platelet receptors, and essential cofactors for stimulating its own formation. However, thrombin is also capable of serving an anticoagulant function by activating protein C.
View Article and Find Full Text PDFIn vertebrate hemostasis, factor Va serves as the cofactor in the prothrombinase complex that results in a 300,000-fold increase in the rate of thrombin generation compared with factor Xa alone. Structurally, little is known about the mechanism by which factor Va alters catalysis within this complex. Here, we report a crystal structure of protein C inactivated factor Va (A1.
View Article and Find Full Text PDFA unique feature of the mechanism of iron binding to the transferrin (TF) family is the synergistic relationship between metal binding and anion binding. Little or no iron will bind to the protein without concomitant binding of an anion, physiologically identified as carbonate. Substitution of oxalate for carbonate produces no significant changes in polypeptide folding or domain orientation in the N-lobe of human serum TF (hTF) as revealed by our 1.
View Article and Find Full Text PDFHuman serum transferrin (hTF) is a bilobal iron-binding and transport protein that carries iron in the blood stream for delivery to cells by a pH-dependent mechanism. Two iron atoms are held tightly in two deep clefts by coordination to four amino acid residues in each cleft (two tyrosines, a histidine, and an aspartic acid) and two oxygen atoms from the "synergistic" carbonate anion. Other residues in the binding pocket, not directly coordinated to iron, also play critical roles in iron uptake and release through hydrogen bonding to the liganding residues.
View Article and Find Full Text PDF