Publications by authors named "Twinkle Chaudhary"

In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil.

View Article and Find Full Text PDF

Microbial plant interaction plays a major role in the sustainability of plants. The understanding of phytomicrobiome interactions enables the gene-editing tools for the construction of the microbial consortia. In this interaction, microbes share several common secondary metabolites and terpenoid metabolic pathways with their host plants that ensure a direct connection between the microbiome and associated plant metabolome.

View Article and Find Full Text PDF

The plant growth-promoting rhizobacteria (PGPR) can improve the biotic or abiotic stress condition by exploiting the productivity and plant growth of the plants under stressful conditions. This study examines the role of a rhizospheric bacterial isolate TCPS-4 isolated from cluster bean plant () under dryland condition. The low-cost media engineering was evaluated, and the phosphate-solubilizing and IAA-producing abilities of TCPS-4 were improved using a hybrid statistical tool viz Multi-objective Genetic Algorithm (MOGA).

View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of MB-17a as an endophytic bacterium isolated from the roots of the mung bean () plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits.

View Article and Find Full Text PDF

Bioinoculants are eco-friendly microorganisms having a variety of products commonly utilized for improving the potential of soil and providing the nutrient requirements to the host plant. The usage of chemical fertilizers is not beneficial because it affects the soil microbial communities on large scale. The toxicity of chemical fertilizer decreases the fertility of soil and causes microbial disruption.

View Article and Find Full Text PDF

Bioinoculants are eco-friendly microorganisms, and their products are utilized for improving the potential of soil and fulfill the nutrients requirement for the host plant. The agricultural yield has increased due to the use of bioinoculants over chemical-based fertilizers, and thus it generates interest in understanding the innovation process by various methods. By gene-editing tool, the desired gene product can be changed for engineered microbial inoculants.

View Article and Find Full Text PDF

Soil microbial species that act as PGPR or bioinoculants have the capability of improving plant health and promoting its growth. They facilitate plants for uptake nutrients from their surroundings. They provide resistivity to pathogenic pests and also play many roles in the bioremediation process.

View Article and Find Full Text PDF