This study investigated the effects of embryo reduction and transfer of Day 11 embryos, with or without subsequent reduction, on luteostasis in the mare. In Experiment 1, reduction of embryos at Days 10 (n = 15), 11 (n = 47), 12 (n = 36), 13 (n = 27), 14 (n = 5) and 16 (n = 2) of pregnancy resulted in luteostasis in 13%, 47%, 78%, 89%, 80% and 100% mares. Mares undergoing > 1 embryo reduction showed consistency in when luteostasis occurred.
View Article and Find Full Text PDFGlycosylation of the reproductive tract of an adult female red-necked ostrich (Struthio camelus camelus) carrying a fully formed calcified egg in her uterus when accidently killed by a blow to the head was examined using lectin histochemistry on samples from the infundibulum, magnum, uterus and vagina. Glycans in the luminal epithelium and underlying glands were described after staining with 23 lectins after neuraminidase pre-treatment in some cases. Ciliated and non-ciliated cells were evident at all levels in the luminal epithelium, the latter full of richly glycosylated secretory granules.
View Article and Find Full Text PDFBackground: Three horse mares inadvertently inseminated with semen from a Tayorella asinigenitalis-positive Jack donkey developed severe, purulent endometritis whereas two Jenny donkeys mated naturally to the same Jack donkey did not develop clinical signs of infection.
Objectives: To isolate and identify the causative agent.
Study Design: Case report.
The great karyotypic differences between camel, cattle and pig, three important domestic animals, have been a challenge for comparative cytogenetic studies based on conventional cytogenetic approaches. To construct a genome-wide comparative chromosome map among these artiodactyls, we made a set of chromosome painting probes from the dromedary camel (Camelus dromedarius) by flow sorting and degenerate oligonucleotide primed-PCR. The painting probes were first used to characterize the karyotypes of the dromedary camel (C.
View Article and Find Full Text PDFA genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization.
View Article and Find Full Text PDF