Ion-specific effects on aqueous solvation of monovalent counter ions, Na , K , Cl , and Br , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation.
View Article and Find Full Text PDFWe show by extensive experimental characterization combined with molecular simulations that pH has a major impact on the assembly mechanism and properties of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) complexes. A combination of dynamic light scattering (DLS) and laser Doppler velocimetry (LDV) is used to assess the complexation, charge state, and other physical characteristics of the complexes, isothermal titration calorimetry (ITC) is used to examine the complexation thermodynamics, and circular dichroism (CD) is used to extract the polypeptides' secondary structure. For enhanced analysis and interpretation of the data, analytical ultracentrifugation (AUC) is used to define the precise molecular weights and solution association of the peptides.
View Article and Find Full Text PDFWater existing within thin polyelectrolyte multilayer (PEM) films has significant influence on their physical, chemical, and thermal properties, having implications for applications including energy storage, smart coatings, and biomedical systems. Ionic strength, salt type, and terminating layer are known to influence PEM swelling. However, knowledge of water's microenvironment within a PEM, whether that water is affiliated with intrinsic or extrinsic ion pairs, remains lacking.
View Article and Find Full Text PDFElectronic coupling between adjacent molecules is one of the key parameters determining the charge transfer (CT) rates in bulk heterojunction (BHJ) polymer solar cells (PSCs). We calculate theoretically electronic couplings for exciton dissociation (ED) and charge recombination (CR) processes at local poly(thiophene-co-quinoxaline) (TQ)-PC71BM interfaces. We use eigenstate-based coupling schemes, i.
View Article and Find Full Text PDFConjugated donor-acceptor (D-A) copolymers show tremendous promise as active components in thin-film organic bulk heterojunction solar cells and transistors, as appropriate combinations of D-A units enable regulation of the intrinsic electronic and optical properties of the polymer. Here, the structural, electronic, and optical properties of two D-A copolymers that make use of thieno[3,4-c]pyrrole-4,6-dione as the acceptor and differ by their donor unit-benzo[1,2-b:4,5-b']dithiophene (BDT) vs the ladder-type heptacyclic benzodi(cyclopentadithiophene)-are compared using density functional theory methods. Our calculations predict some general similarities, although the differences in the donor structures lead also to clear differences.
View Article and Find Full Text PDFThe benzothiadiazole moiety has been extensively exploited as a building block in the syntheses of efficient organic semiconducting materials during the past decade. In this paper, parallel synthetic routes to benzothiadiazole derivatives, inspired by previous computational findings, are reported. The results presented here show that various C-C cross-couplings of benzothiadiazole, thiophene, and thiazole derivatives can be efficiently performed by applying Xantphos as a ligand of the catalyst system.
View Article and Find Full Text PDF