Life-history traits are influenced by environmental factors throughout the lifespan of an individual. The relative importance of past versus present environment on individual fitness, therefore, is a relevant question in populations that face the challenge of temporally varying environment. We studied the interacting effects of past and present density on body mass, condition, and survival in enclosure populations of the bank vole (Myodes glareolus) using a reciprocal transplant design.
View Article and Find Full Text PDFBackground: To maximize their fitness, parents are assumed to allocate their resources optimally between number and size of offspring. Although this fundamental life-history trade-off has been subject to long standing interest, its genetic basis, especially in wild mammals, still remains unresolved. One important reason for this problem is that a large multigenerational pedigree is required to conduct a reliable analysis of this trade-off.
View Article and Find Full Text PDFParasites indirectly affect life-history evolution of most species. Combating parasites requires costly immune defenses that are assumed to trade off with other life-history traits. In vertebrate males, immune defense is thought to trade off with reproductive success, as androgens enhancing sexual signaling can suppress immunity.
View Article and Find Full Text PDFIt is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct.
View Article and Find Full Text PDFThe physiological and behavioral mechanisms underlying life-history trade-offs are a continued source of debate. Testosterone (T) is one physiological factor proposed to mediate the trade-off between reproduction and survival. We use phenotypic engineering and multiple laboratory and field fitness-related phenotypic traits to test the effects of elevated T between two bank vole Myodes glareolus groups: dominant and subordinate males.
View Article and Find Full Text PDFNegative frequency-dependence, which favors rare genotypes, promotes the maintenance of genetic variability and is of interest as a potential explanation for genetic differentiation. Density-dependent selection may also promote cyclic changes in frequencies of genotypes. Here we show evidence for both density-dependent and negative frequency-dependent selection on opposite life-history tactics (low or high reproductive effort, RE) in the bank vole (Myodes glareolus).
View Article and Find Full Text PDFSexual selection predicts that trade-offs maintain trait variation in alternative reproductive strategies. Experiments often focus on testosterone (T), but the gonadotropins follicle-stimulating hormone and luteinizing hormone may provide a clearer understanding of the pleiotropic relationships among traits. We assess the activational role of gonadotropins on T and corticosterone regulation in traits expressed by polymorphic male side-blotched lizards Uta stansburiana.
View Article and Find Full Text PDFBody size at birth has implications for the quality of individuals throughout their life. Although large body size is generally considered an advantage, the relationship between body size at birth and long-term fitness is often complicated. Under spatial or temporal variation in environmental conditions, such as the seasonally changing densities of Fennoscandian vole populations, selection should favor variation in offspring phenotypes, as different qualities may be beneficial in different conditions.
View Article and Find Full Text PDFSexual selection based on signaling requires that signals used by females in mate choice are reliable indicators of a male's heritable total fitness. A signal and the preference for it are expected to be heritable, resulting in the maintenance of genetic covariance between these two traits. However, a recent article has proposed that signals may quickly become unreliable in the presence of both environmental variation and genotype-by-environment interaction (G x E) with crossing reaction norms, potentially compromising the mechanisms of sexual selection.
View Article and Find Full Text PDFWe used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter.
View Article and Find Full Text PDF