Publications by authors named "Turi T"

In this study, we formulate a computational reaction model following a chemical kinetic theory approach to predict the binding rate constant for the siRNA-RISC complex formation reaction. The model allowed us to study the potency difference between 2-nt 3' overhangs against blunt-ended siRNA molecules in an RNA interference (RNAi) system. The rate constant predicted by this model was fed into a stochastic simulation of the RNAi system (using the Gillespie stochastic simulator) to study the overall potency effect.

View Article and Find Full Text PDF

Retinoids, natural and synthetic derivatives of vitamin A, are active in cancer therapy and chemoprevention. We reported previously that all-trans-retinoic acid (RA) treatment prevented carcinogen-induced transformation of immortalized human bronchial epithelial (HBE) cells. To identify cancer chemopreventive mechanisms, immortalized (BEAS-2B), carcinogen-transformed (BEAS-2B(NNK)), and RA-chemoprevented (BEAS-2B(NNK/RA)) HBE cells were used to conduct microarray analyses independently.

View Article and Find Full Text PDF

Nur77 is a nuclear orphan steroid receptor that has been implicated in negative selection. Expression of Nur77 in thymocytes and cell lines leads to apoptosis through a mechanism that remains unclear. In some cell lines, Nur77 was reported to act through a transcription-independent mechanism involving translocation to mitochondria, leading to cytochrome c release.

View Article and Find Full Text PDF

Retinoids, the natural and synthetic derivatives of vitamin A, have a role in cancer treatment and prevention. There is a need to reveal mechanisms that account for retinoid response or resistance. This study identified candidate all-trans-retinoic acid (RA) target genes linked to growth suppression in BEAS-2B human bronchial epithelial cells.

View Article and Find Full Text PDF

Signaling through the protein phosphatase calcineurin may play a critical role in cardiac hypertrophy. The gene for Down Syndrome Critical Region-1 (DSCR1) encodes a protein that is an endogenous calcineurin inhibitor. This study was designed to test the hypothesis that DSCR1 is directly induced by biomechanical stimuli.

View Article and Find Full Text PDF

Biomechanical strain is a stimulus for cardiomyocyte hypertrophy and heart failure, but the underlying molecular mechanisms remain incompletely understood. Using an in vivo murine model of pressure overload and an in vitro model of mechanical stimulation of primary cardiomyocytes, we identified iex-1 as a gene activated during the early response of cardiomyocytes to hypertrophic stimuli and as a gene product that inhibits hypertrophy without affecting cardiomyocyte viability. On stimulation of cardiomyocytes, iex-1 mRNA and protein expression increased and translocation of the gene product to the cardiomyocyte nucleus occurred.

View Article and Find Full Text PDF

The epidermis, our first line of defense from ultraviolet (UV) light, bears the majority of photodamage, which results in skin thinning, wrinkling, keratosis, and malignancy. Hypothesizing that skin has specific mechanisms to protect itself and the organism from UV damage, we used DNA arrays to follow UV-caused gene expression changes in epidermal keratinocytes. Of the 6,800 genes examined, UV regulates the expression of at least 198.

View Article and Find Full Text PDF

Although intracellular antibodies (intrabodies) are being explored as putative therapeutic and research reagents, little is known about the principles that dictate the efficacy of these molecules. In our efforts to address this issue, we generated a panel of five intrabodies, directed against catalytically inactive murine caspase-3, by screening single-chain antibody (Fv) phage display libraries. Here we determined criteria that single-chain Fv fragments must fulfill to act as efficient intrabodies.

View Article and Find Full Text PDF

In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.

View Article and Find Full Text PDF

Background: Unstable atherosclerotic lesions typically have an abundant inflammatory cell infiltrate, including activated T cells, macrophages, and mast cells, which may decrease plaque stability. The pathophysiology of inflammatory cell recruitment and activation in the human atheroma is incompletely described.

Methods And Results: We hypothesized that differential gene expression with DNA microarray technology would identify new genes that may participate in vascular inflammation.

View Article and Find Full Text PDF

Recently, the human ATP-binding cassette transporter-1 (ABC1) gene has been demonstrated to be mutated in patients with Tangier disease. To investigate the role of the ABC1 protein in an experimental in vivo model, we used gene targeting in DBA-1J embryonic stem cells to produce an ABC1-deficient mouse. Expression of the murine Abc1 gene was ablated by using a nonisogenic targeting construct that deletes six exons coding for the first nucleotide-binding fold.

View Article and Find Full Text PDF

8 h) and high steady-state levels of protein accumulation, while the H2 intrabodies had a half-life of 2 h and less protein at steady state. These results suggest that the choice of sFv as an intrabody depends critically on the intracellular sFv protein having an extended half-life and elevated steady-state level. Thus, extended half-life must be considered together with sFv antibody specificity and affinity when choosing an optimal sFv intrabody for functional studies of cellular proteins.

View Article and Find Full Text PDF

Vascular smooth muscle cells must monitor and respond to their mechanical environment; however, the molecular response of these cells to mechanical stimuli remains incompletely defined. By applying a highly uniform biaxial cyclic strain to cultured cells, we used DNA microarray technology to describe the transcriptional profile of mechanically induced genes in human aortic smooth muscle cells. We first identified vascular endothelial growth factor (VEGF) as a mechanically induced gene in these cells; VEGF served as a positive control for these experiments.

View Article and Find Full Text PDF

The effects of estrogen and estrogen agonists can be mediated by estrogen receptor alpha (ER alpha) and estrogen receptor beta (ER beta). We now report the identification and initial characterization of several novel isoforms of rat ER beta messenger RNA (mRNA). The most abundant of these mRNA variants we have called ER beta2.

View Article and Find Full Text PDF

N-Acetylaspartylglutamate (NAAG) is the most prevalent peptide neurotransmitter in the mammalian nervous system. NAAG selectively activates the type 3 metabotropic glutamate receptor. It is inactivated by peptidase activity on the extracellular face of the plasma membrane of neurons and glia.

View Article and Find Full Text PDF

Apoptosis (programmed cell death) is a fundamental process for normal development of multicellular organisms, and is involved in the regulation of the immune system, normal morphogenesis, and maintenance of homeostasis, ICE/CED-3 family cysteine proteases have been implicated directly in apoptosis, but relatively few of the substrates through which their action is mediated have been identified. Here we report that D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, is a substrate of the apoptosis protease CPP32/Yama/Apopain. D4-GDI was rapidly truncated to a 23-kDa fragment in Jurkat cells with kinetics that parallel the onset of apoptosis following Fas cross-linking with agonistic antibody or treatment with staurosporine.

View Article and Find Full Text PDF

The fungal metabolite brefeldin A disrupts protein secretion and causes the redistribution of the Golgi complex to the endoplasmic reticulum. Previously we isolated six genes that, when present in multiple copies, confer brefeldin A resistance to wild type Schizosaccharomyces pombe. Here we describe the characterization of one of these genes, hba1.

View Article and Find Full Text PDF

Brefeldin A disrupts protein secretion and causes the redistribution of the Golgi complex to endoplasmic reticulum in both mammalian cells and wild type Schizosaccharomyces pombe. We have previously isolated six different genes that, when present in multiple copies, confer brefeldin A resistance to wild type S. pombe.

View Article and Find Full Text PDF

Background: This study followed up the natural history of T-wave inversion and assessed the short-term prognosis associated with the condition.

Methods: Forty patients with acute ischemic syndrome, without infarction, and with postischemic T-wave inversion (group 1) were followed during the persistence (inverted T-wave period) and after the resolution of T-wave inversion (positive T-wave period). Another 40 patients with acute ischemic syndrome, without infarction and with normal T waves (group 2), were also followed.

View Article and Find Full Text PDF

The small membrane protein Vpu of human immunodeficiency virus type 1 stimulates rapid degradation of CD4 molecules that are retained in the endoplasmic reticulum. To analyze the domain(s) of CD4 involved in Vpu-stimulated degradation, we examined degradation of hybrid proteins made between the vesicular stomatitis virus glycoprotein (VSV G) and CD4. Vpu expression stimulated rapid degradation of a hybrid consisting of the extracellular domain of VSV G linked to the transmembrane and cytoplasmic domains of CD4.

View Article and Find Full Text PDF

The fungal metabolite brefeldin A (BFA) causes the inhibition of protein secretion and the disruption of the structure and function of the Golgi complex in mammalian cells. Here we show that BFA has identical effects in the fission yeast Schizosaccharomyces pombe which normally contains a Golgi complex of stacked cisternae similar to the Golgi complexes in animal cells. After treatment with BFA, secretion was inhibited, Golgi complexes disappeared, and there was an accumulation of endoplasmic reticulum.

View Article and Find Full Text PDF

This study has followed up the natural history of postischemic inverted T waves and assessed the prognosis. 40 consecutive patients with unstable angina with postischemic precordial inverted T waves in the noninfarcted, previously ischemic area were followed during the persistence (negative T wave period) and after resolution of inverted T waves (positive T wave period). The outcome with frequencies of acute myocardial infarction, acute ischemic syndrome, angina pectoris, positive exercise test, silent myocardial ischemia, anterior wall motion abnormalities on echocardiogram, positive coronary arteriography were determined and compared in the negative versus positive T wave periods.

View Article and Find Full Text PDF

The identification of the precise structural features of yeast sterol molecules required for the essential "sparking" function has been a controversial area of research. Recent cloning and gene disruption studies in Saccharomyces cerevisiae have shown that C-24 methylation (ERG6), C-5 desaturation (ERG3) and delta 8-delta 7 isomerization (ERG2) are not required, while C-14 demethylation (ERG11) and C-14 reduction (ERG24) are each required for aerobic viability. Earlier observations had indicated that C-14 demethylase deficient strains could be restored to aerobic growth by suppressor mutations that caused a deficiency in C-5 desaturase.

View Article and Find Full Text PDF

The major cytochrome P450 in the yeast Saccharomyces cerevisiae, lanosterol 14 alpha-demethylase (ERG11), catalyzes an essential reaction in the biosynthesis of ergosterol, the predominant sterol of yeast. Protein levels of this cytochrome P450 are known to be affected by carbon source, oxygen, and heme, as well as the growth state of the culture. We have determined that ERG11 message levels increase during growth on glucose, in the presence of heme, and during oxygen limiting growth conditions and, unexpectedly, during anaerobic growth.

View Article and Find Full Text PDF

DNA sequencing and analysis of genomic DNA using the polymerase chain reaction were used to demonstrate that SOD1 and ERG11 are adjacent genes in Saccharomyces cerevisiae S288c and to establish the correct intergenic sequence of this segment on chromosome VIII.

View Article and Find Full Text PDF