The melanoma-associated antigen family A (MAGEA) antigens are expressed in a wide variety of malignant tumors but not in adult somatic cells, rendering them attractive targets for cancer immunotherapy. Here we show that a number of cancer-associated MAGEA mutants that undergo proteasome-dependent degradation in vitro could negatively impact their utility as immunotherapeutic targets. Importantly, in pancreatic ductal adenocarcinoma cell models, MAGEA6 suppresses macroautophagy (autophagy).
View Article and Find Full Text PDFThe functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes.
View Article and Find Full Text PDFOncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, , and as well as 20 previously uncharacterized fusion genes identified in The Cancer Genome Atlas datasets.
View Article and Find Full Text PDFAs we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFLarge-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers. Here we describe a mutation assessment pipeline enabled by high-throughput engineering of molecularly barcoded gene variant expression clones identified by tumor sequencing.
View Article and Find Full Text PDFMoesin is an ERM family protein that connects the actin cytoskeleton to transmembrane receptors. With the identification of the ERM family protein NF2 as a tumor suppressor in glioblastoma, we investigated roles for other ERM proteins in this malignancy. Here, we report that overexpression of moesin occurs generally in high-grade glioblastoma in a pattern correlated with the stem cell marker CD44.
View Article and Find Full Text PDFEndometrial cancer is the most common gynecological malignancy, with more than 280,000 cases occurring annually worldwide. Although previous studies have identified important common somatic mutations in endometrial cancer, they have primarily focused on a small set of known cancer genes and have thus provided a limited view of the molecular basis underlying this disease. Here we have developed an integrated systems-biology approach to identifying novel cancer genes contributing to endometrial tumorigenesis.
View Article and Find Full Text PDFObject: Chordomas are locally aggressive bone tumors known to arise from the remnants of the notochord. Because chordomas are rare, molecular studies aimed at developing new therapies are scarce and new approaches are needed. Chordoma cells and cancer stem-like cells share similar characteristics, including self-renewal, differentiation, and resistance to chemotherapy.
View Article and Find Full Text PDF