GABA receptors (GBRs) are G protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GBRs regulate fast synaptic transmission by gating Ca and K channels via the Gβγ subunits of the activated G protein. It has been demonstrated that auxiliary GBR subunits, the KCTD proteins, shorten onset and rise time and increase desensitization of receptor-induced K currents.
View Article and Find Full Text PDFNoise-induced tinnitus is generally associated with hearing impairment caused by traumatic acoustic overexposure. Previous studies in laboratory animals and human subjects, however, have observed differences in tinnitus susceptibility, even among individuals with similar hearing loss. The mechanisms underlying increased sensitivity or, conversely, resistance to tinnitus are still incompletely understood.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2023
GABA receptors are G-protein coupled receptors for the inhibitory neurotransmitter GABA. Functional GABA receptors are formed as heteromers of GABA and GABA subunits, which further associate with various regulatory and signaling proteins to provide receptor complexes with distinct pharmacological and physiological properties. GABA receptors are widely distributed in nervous tissue, where they are involved in a number of processes and in turn are subject to a number of regulatory mechanisms.
View Article and Find Full Text PDFStress responses are activated by the hypothalamic-pituitary-adrenal axis (HPA axis), culminating in the release of glucocorticoids. During prolonged periods of secretion of glucocorticoids or inappropriate behavioral responses to a stressor, pathologic conditions may occur. Increased glucocorticoid concentration is linked to generalized anxiety, and there are knowledge gaps regarding its regulation.
View Article and Find Full Text PDFThe cranial window technique has proven to be an effective method for in vivo imaging of cortical activity. However, given the invasive nature of this procedure, possible side effects could be expected in the nervous system. In this study, we evaluated the effects of unilateral cranial window surgery on auditory function in C57BL6 mice using electrophysiological and behavioral approaches.
View Article and Find Full Text PDFGABA receptors (GBRs) are key regulators of synaptic release but little is known about trafficking mechanisms that control their presynaptic abundance. We now show that sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expression.
View Article and Find Full Text PDFInhibitory circuits in the auditory brainstem undergo multiple postnatal changes that are both activity-dependent and activity-independent. We tested to see if the shift from GABA- to glycinergic transmission, which occurs in the rat medial nucleus of the trapezoid body (MNTB) around the onset of hearing, depends on sound-evoked neuronal activity. We prevented the activity by bilateral cochlear ablations in early postnatal rats and studied ionotropic GABA and glycine receptors in MNTB neurons after hearing onset.
View Article and Find Full Text PDFRimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear.
View Article and Find Full Text PDFUnlabelled: GABA receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABA receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABA receptors also associate with hetero-oligomers of KCTD subunits.
View Article and Find Full Text PDFGABA(B) receptors (GABA(B)Rs) regulate the excitability of most neurons in the central nervous system by modulating the activity of enzymes and ion channels. In the sustained presence of the neurotransmitter γ-aminobutyric acid, GABA(B)Rs exhibit a time-dependent decrease in the receptor response-a phenomenon referred to as homologous desensitization. Desensitization prevents excessive receptor influences on neuronal activity.
View Article and Find Full Text PDFThe physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy.
View Article and Find Full Text PDFGABAB receptors assemble from GABAB1 and GABAB2 subunits. GABAB2 additionally associates with auxiliary KCTD subunits (named after their K(+) channel tetramerization-domain). GABAB receptors couple to heterotrimeric G-proteins and activate inwardly-rectifying K(+) channels through the βγ subunits released from the G-protein.
View Article and Find Full Text PDFActivation of K(+) channels by the G protein βγ subunits is an important signaling mechanism of G-protein-coupled receptors. Typically, receptor-activated K(+) currents desensitize in the sustained presence of agonists to avoid excessive effects on cellular activity. The auxiliary GABAB receptor subunit KCTD12 induces fast and pronounced desensitization of the K(+) current response.
View Article and Find Full Text PDFThe calyx of Held synapse of the medial nucleus of the trapezoid body is a giant axosomatic synapse in the auditory brainstem, which acts as a relay synapse showing little dependence of its synaptic strength on firing frequency. The main mechanism that is responsible for its resistance to synaptic depression is its large number of release sites with low release probability. Here, we investigated the contribution of presynaptic GABA(B) receptors and spontaneous activity to release probability both in vivo and in vitro in young-adult mice.
View Article and Find Full Text PDFGABA(B) receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABA(B) receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABA(B1a), GABA(B1b), and GABA(B2) form fully functional heteromeric GABA(B(1a,2)) and GABA(B(1b,2)) receptors.
View Article and Find Full Text PDFThe properties of glycine receptors (GlyRs) depend upon their subunit composition. While the prevalent adult forms of GlyRs are heteromers, previous reports suggested functional α homomeric receptors in mature nervous tissues. Here we show two functionally different GlyRs populations in the rat medial nucleus of trapezoid body (MNTB).
View Article and Find Full Text PDFFunctional asymmetry of G-protein-coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT₁ receptor, which directly and constitutively couples to G(i) proteins and the regulator of G-protein signalling (RGS) 20. The molecular organization of the ternary MT₁/G(i)/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex.
View Article and Find Full Text PDFGABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GABAB receptors are abundant on dendritic spines, where they dampen postsynaptic excitability and inhibit Ca2+ influx through NMDA receptors when activated by spillover of GABA from neighboring GABAergic terminals. Here, we show that an excitatory signaling cascade enables spines to counteract this GABAB-mediated inhibition.
View Article and Find Full Text PDFGABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. They are expressed in almost all neurons of the brain, where they regulate synaptic transmission and signal propagation by controlling the activity of voltage-gated calcium (Ca(v)) and inward-rectifier potassium (K(ir)) channels. Molecular cloning revealed that functional GABA(B) receptors are formed by the heteromeric assembly of GABA(B1) with GABA(B2) subunits.
View Article and Find Full Text PDFGABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. Accordingly, it was found that GABA(B(1a,2)) receptors are more efficient than GABA(B(1b,2)) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen.
View Article and Find Full Text PDFAt the initial stages in neuronal development, GABAergic and glycinergic neurotransmission exert depolarizing responses, assumed to be of importance for maturation, which in turn shift to hyperpolarizing in early postnatal life due to development of the chloride homeostasis system. Spherical bushy cells (SBC) of the mammalian cochlear nucleus integrate excitatory glutamatergic inputs with inhibitory (GABAergic and glycinergic) inputs to compute signals that contribute to sound localization based on interaural time differences. To provide a fundamental understanding of the properties of GABAergic neurotransmission in mammalian cochlear nucleus, we investigated the reversal potential of the GABA-evoked currents (E GABA) by means of gramicidin-perforated-patch recordings in developing SBC.
View Article and Find Full Text PDFGABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic, physiological, and morphological approach, we now demonstrate that GABAB1 isoforms localize to distinct synaptic sites and convey separate functions in vivo.
View Article and Find Full Text PDFMaturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB).
View Article and Find Full Text PDFThe mammalian medial nucleus of the trapezoid body (MNTB) harbors one of the most powerful terminals in the CNS, the calyx of Held. The mechanisms known to regulate this synaptic relay are relatively ineffective. Here, we report the presence of a remarkably robust and fast-acting glycinergic inhibitory system capable of suppressing calyceal transmission.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2002
Activation of ionotropic glycine receptors potentiates glutamate release in mature calyceal nerve terminals of the rat medial nucleus of the trapezoid body, an auditory brainstem nucleus. In young rats, glycine and its receptors are poorly expressed. We therefore asked whether GABA (gamma-aminobutyric acid) might play a larger role than glycine in the regulation of glutamate release in the absence of glycine receptors.
View Article and Find Full Text PDF