Sulfur-based molecules producing self-assembled monolayers on gold surfaces have long since become relevant functional molecular materials with many applications in biosensing, electronics, and nanotechnology. Among the various sulfur-containing molecules, the possibility to anchor a chiral sulfoxide to a metal surface has been scarcely investigated, despite this class of molecules being of great importance as ligands and catalysts. In this work, ()-(+)-methyl -tolyl sulfoxide was deposited on Au(111) and investigated by means of photoelectron spectroscopy and density functional theory calculations.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
Zn-salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV-Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn-Sal) and the effect of the interaction between Zn-Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an (moles, volume, and temperature) ensemble.
View Article and Find Full Text PDFUltrafast optical reflectivity measurements of silicon, germanium, and gallium arsenide have been carried out using an advanced set-up providing intense subpicosecond pulses (35 fs FWHM, [Formula: see text] = 400 nm) as a pump and broadband 340-780 nm ultrafast pulses as a white supercontinuum probe. Measurements have been performed for selected pump fluence conditions below the damage thresholds, that were carefully characterized. The obtained fluence damage thresholds are 30, 20.
View Article and Find Full Text PDFThe knowledge of the carrier dynamics in nanostructures is of fundamental importance for the development of (opto)electronic devices. This is true for semiconducting nanostructures as well as for plasmonic nanoparticles (NPs). Indeed, improvement of photocatalytic efficiencies by combining semiconductor and plasmonic nanostructures is one of the reasons why their ultrafast dynamics are intensively studied.
View Article and Find Full Text PDFThe ultrafast dynamics of excited states in cerium oxide are investigated to access the early moments of polaron formation, which can influence the photocatalytic functionality of the material. UV transient absorbance spectra of photoexcited CeO exhibit a bleaching of the band edge absorbance induced by the pump and a photoinduced absorbance feature assigned to Ce 4f → Ce 5d transitions. A blue shift of the spectral response of the photoinduced absorbance signal in the first picosecond after the pump excitation is attributed to the dynamical formation of small polarons with a characteristic time of 330 fs.
View Article and Find Full Text PDFUpon photoexcitation with a femtosecond laser pulse, the plasmonic resonance of a nanorod can couple with coherent vibrational modes generating a regular oscillating pattern in the transient absorbance of the nanostructure. The dynamics of the plasmon resonances of these materials are probed through femtosecond transient absorption spectroscopy in the spectral region between 400 nm and 1600 nm. Whereas in the visible range the spectra are comparable with the findings reported in the literature, the analysis of the transient NIR spectra revealed that their oscillation frequencies vary with wavelength, resulting in a strong distortion of the transient features that can be related to the specific lengths distribution of the nanorods contained in the sample.
View Article and Find Full Text PDFIn this work we show how the optical properties of ZnSe nanowires are modified by the presence of Ag nanoparticles on the sidewalls of the ZnSe nanowires. In particular, we show that the low-temperature luminescence of the ZnSe nanowires changes its shape, enhancing the phonon replicas of impurity-related recombination and affecting rise and decay times of the transient absorption bleaching at room temperatures, with an increase of the former and a decrease of the latter. In contrast, the deposition of Au nanoparticles on ZnSe nanowires does not change the optical properties of the sample.
View Article and Find Full Text PDFAtoms and molecules attached to rare-gas clusters are ionized by an interatomic autoionization process traditionally termed "Penning ionization" when the host cluster is resonantly excited. Here we analyze this process in the light of the interatomic Coulombic decay (ICD) mechanism, which usually contains a contribution from charge exchange at a short interatomic distance and one from virtual photon transfer at a large interatomic distance. For helium (He) nanodroplets doped with alkali metal atoms (Li, Rb), we show that long-range and short-range contributions to the interatomic autoionization can be clearly distinguished by detecting electrons and ions in coincidence.
View Article and Find Full Text PDFThe study of transition metal coordination complexes has played a key role in establishing quantum chemistry concepts such as that of ligand field theory. Furthermore, the study of the dynamics of their excited states is of primary importance in determining the de-excitation path of electrons to tailor the electronic properties required for important technological applications. This work focuses on femtosecond transient absorption spectroscopy of Cobalt tris(acetylacetonate) (Co(AcAc)) in solution.
View Article and Find Full Text PDFGas phase ion chemistry has fundamental and applicative purposes since it allows the study of the chemical processes in a solvent free environment and represents models for reactions occurring in the space at low and high temperatures. In this work the ion-molecule reaction of sulfur dioxide ion with carbon monoxide CO is investigated in a joint experimental and theoretical study. The reaction is a fast and exothermic chemical oxidation of CO into more stable CO by a metal free species, as , excited into ro-vibrational levels of the electronic ground state by synchrotron radiation.
View Article and Find Full Text PDFWe present femtosecond transient transmission (or absorbance) measurements in silicon nanowires in the energy range 1.1-3.5 eV, from below the indirect band-gap to above the direct band-gap.
View Article and Find Full Text PDFHot-carriers, that is, charge carriers with an effective temperature higher than that of the lattice, may contribute to the high power conversion efficiency (PCE) shown by perovskite-based solar cells (PSCs), which are now competitive with silicon solar cells. Hot-carriers lose their excess energy in very short times, typically in a few picoseconds after excitation. For this reason, the carrier dynamics occurring on this time scale are extremely important in determining the participation of hot-carriers in the photovoltaic process.
View Article and Find Full Text PDFLinear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length.
View Article and Find Full Text PDFPhotoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV.
View Article and Find Full Text PDFGold nanoparticles with an average diameter of 10 nm, functionalized by the dye molecule rhodamine B isothiocyanate, have been synthesized. The resulting material has been extensively characterized both chemically, to investigate the bonding between the dye molecules and the nanoparticles, and physically, to understand the details of the aggregation induced by interaction between dye molecules on different nanoparticles. The plasmonic response of the system has been further characterized by measurement and theoretical simulation of the static UV-Vis extinction spectra of the aggregates produced following different synthesis procedures.
View Article and Find Full Text PDFPhotoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the [Formula: see text] outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects.
View Article and Find Full Text PDFIn the present work, we studied the photoinduced ion chemistry of the halogenated pyrimidines, a class of prototype radiosensitizing molecules, in the energy region 9-15 eV. The work was stimulated by previous studies on inner shell site-selective fragmentation of the pyrimidine molecule, which have shown that the fragmentation is governed by the population/formation of specific ionic states with a hole in valence orbitals, which in turn correlate to accessible dissociation limits. The combined experimental and theoretical study of the appearance energies of the main fragments provides information on the geometric structure of the products and on the role played by the specific halogen atom and the site of halogenation in the dissociation process.
View Article and Find Full Text PDFA study of (R)-3-methylcyclopentanone [(R)-3-MCP] by photoelectron spectroscopy and photoelectron circular dichroism (PECD) is presented. The synchrotron radiation gas-phase photoelectron spectra of (R)-3-MCP were measured and are discussed on the basis of different theoretical methodologies. The experimental dichroism of (R)-3-MCP for selected deconvoluted valence states and for the carbonyl carbon 1s core state are reported and reproduced well by calculated dispersions generated by considering the contributions of two different conformers.
View Article and Find Full Text PDFA sizable enhancement of the circular dichroism in photoelectron spectroscopy has been measured and computed for the metal complex Δ-cobalt(III) tris-acetylacetonate highest occupied molecular orbital state in the region of the Co 3p→3d Fano resonance. In the resonance the dichroism reaches the maximum value of 5% and even changes its sign as compared to the direct photoionization channel. We ascribe this enhancement to electron correlation processes, namely, with the coupling between discrete excitations and the continuum, which is correctly described in the time dependent density functional theory (TDDFT) framework.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2011
The electronic structure of epichlorohydrin is investigated in the whole valence region by a combined experimental and theoretical study. The issue of controversial assignments of the molecular electronic structure is here addressed. Photoelectron spectra (PES) and Threshold Photoelectron spectra (TPES) of room temperature molecules in the gas phase are recorded.
View Article and Find Full Text PDF