Publications by authors named "Turan Birol"

Symmetry plays an important role in determining the physical properties in condensed matter physics, as the symmetry operations of any physical property must include the symmetry operations of the point group of the crystal. As a consequence, crystallographic polarity and chirality are expected to have an impact on the Cooper pairing in a superconductor. While superconductivity with crystallographic polarity and chirality have both been found in a few crystalline phases separately; however, their coexistence and material realizations have not been studied.

View Article and Find Full Text PDF
Article Synopsis
  • MnSiTe, a nodal-line semiconductor, has attracted attention for its unique properties, including a field-induced insulator-to-metal transition and colossal magnetoresistance, without relying on typical Jahn-Teller distortions or double-exchange mechanisms.
  • Researchers conducted infrared measurements to study the behavior of MnSiTe during magnetic ordering and the transition phases, finding that instead of a conventional metallic state, it exhibits weak conductivity with localized electron carriers.
  • Their results, explained through a percolation model, indicate electronic inhomogeneity and suggest new mechanisms like polaron formation and chiral orbital currents that could lead to novel materials with significant magnetoresistance.
View Article and Find Full Text PDF

Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition.

View Article and Find Full Text PDF

Broken time-reversal symmetry in the absence of spin order indicates the presence of unusual phases such as orbital magnetism and loop currents. The recently discovered kagome superconductors AVSb (where A is K, Rb or Cs) display an exotic charge-density-wave (CDW) state and have emerged as a strong candidate for materials hosting a loop current phase. The idea that the CDW breaks time-reversal symmetry is, however, being intensely debated due to conflicting experimental data.

View Article and Find Full Text PDF

Kagome vanadates AVSb display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScVSn, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO, PtCoO) are the most conductive oxides known, for reasons that remain poorly understood.

View Article and Find Full Text PDF

The Sabatier principle and the scaling relations have been widely used to search for and screen new catalysts in the field of catalysis. However, these powerful tools can also serve as limitations of catalyst control and breakthrough. To overcome this challenge, this work proposes an efficient method of studying catalyst control by support polarization from first-principles.

View Article and Find Full Text PDF

Using atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt-Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn to PtSn phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn phase.

View Article and Find Full Text PDF

Achieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe (refs. ).

View Article and Find Full Text PDF

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition.

View Article and Find Full Text PDF

Doping ferroelectrics with carriers is often detrimental to polarization. This makes the design and discovery of metals that undergo a ferroelectriclike transition challenging. In this Letter, we show from first principles that the oxygen octahedral rotations in perovskites are often enhanced by electron doping, and this can be used as a means to strengthen the structural polarization in certain hybrid-improper ferroelectrics-compounds in which the polarization is not stabilized by the long-range Coulomb interactions but is instead induced by a trilinear coupling to octahedral rotations.

View Article and Find Full Text PDF

Distinct dopant behaviors inside and outside dislocation cores are identified by atomic-resolution electron microscopy in perovskite BaSnO with considerable consequences on local atomic and electronic structures. Driven by elastic strain, when A-site designated La dopants segregate near a dislocation core, the dopant atoms accumulate at the Ba sites in compressively strained regions. This triggers formation of Ba vacancies adjacent to the core atomic sites resulting in reconstruction of the core.

View Article and Find Full Text PDF

A line defect with metallic characteristics has been found in optically transparent BaSnO perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect.

View Article and Find Full Text PDF

Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.

View Article and Find Full Text PDF

Expanding the application space of transparent electrodes toward the ultraviolet range has been found challenging when utilizing the conventional approach to degenerately dope semiconductors with band gaps larger than ZnO or InO. Here, it is shown that the correlated metal SrNbO with < 1 is ideally suited as a UV-transparent electrode material, enabling UV light-emitting diodes for a wide range of applications from water disinfection to polymer curing. It is demonstrated that SrNbO thin films can be grown by radio frequency (RF) sputtering and that they remain in the perovskite phase despite a sizeable Sr deficiency.

View Article and Find Full Text PDF

Spin-1 antiferromagnets are abundant in nature, but few theories exist to understand their properties and behavior when geometric frustration is present. Here we study the S=1 kagome compound Na_{2}Ti_{3}Cl_{8} using a combination of density functional theory, exact diagonalization, and density matrix renormalization group approaches to achieve a first principles supported explanation of its exotic magnetic phases. We find that the effective magnetic Hamiltonian includes essential non-Heisenberg terms that do not stem from spin-orbit coupling, and both trimerized and spin-nematic magnetic phases are relevant.

View Article and Find Full Text PDF

High-speed electronics require epitaxial films with exceptionally high carrier mobility at room temperature (RT). Alkaline-earth stannates with high RT mobility show outstanding prospects for oxide electronics operating at ambient temperatures. However, despite significant progress over the last few years, mobility in stannate films has been limited by dislocations because of the inability to grow fully coherent films.

View Article and Find Full Text PDF
Article Synopsis
  • * Using advanced computational methods, we analyze how iron's physical stability and phonon behavior change with temperature, particularly focusing on the transition from bcc to fcc phases.
  • * Our findings reveal that the phonon changes in iron are linked to the loss of long-range ferromagnetic order rather than a structural phase transition, indicating that the bcc structure remains stable across all normal temperatures.
View Article and Find Full Text PDF

Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons.

View Article and Find Full Text PDF

Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.

View Article and Find Full Text PDF
Article Synopsis
  • * It highlights that the first order error in density leads to a smaller second order error in free energy, indicating improved accuracy.
  • * The method is successfully applied to various materials, including metallic SrVO₃, Mott insulating FeO, and elemental cerium, accurately predicting lattice constants and resolving a debate about phase transitions in cerium.
View Article and Find Full Text PDF

Discovery of new transition metal compounds with large spin orbit coupling coexisting with strong electron-electron correlation among the d electrons is essential for understanding the physics that emerges from the interplay of these two effects. In this study, we predict a novel class of J_{eff}=1/2 Mott insulators in a family of fluoride compounds that are previously synthesized, but not characterized extensively. First principles calculations in the level of all electron density functional theory+dynamical mean field theory indicate that these compounds have large Mott gaps and some of them exhibit unprecedented proximity to the ideal, SU(2) symmetric J_{eff}=1/2 limit.

View Article and Find Full Text PDF