Vascular cambium produces the phloem and xylem, vascular tissues that transport resources and provide mechanical support, making it an ideal target for crop improvement. However, much remains unknown about how vascular cambium proliferates. In this study, through pharmaceutical and genetic manipulation of reactive oxygen species (ROS) maxima, we demonstrate a direct link between levels of ROS and activity of LATERAL ORGAN BOUNDARIES DOMAIN 11 (LBD11) in maintaining vascular cambium activity.
View Article and Find Full Text PDFEnergy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge.
View Article and Find Full Text PDFThe emergence of a plant vascular system was a prerequisite for the colonization of land; however, it is unclear how the photosynthate transporting system was established during plant evolution. Here, we identify a novel translational regulatory module for phloem development involving the zinc-finger protein JULGI (JUL) and its targets, the 5' untranslated regions (UTRs) of the SUPPRESSOR OF MAX2 1-LIKE4/5 (SMXL4/5) mRNAs, which is exclusively conserved in vascular plants. JUL directly binds and induces an RNA G-quadruplex in the 5' UTR of SMXL4/5, which are key promoters of phloem differentiation.
View Article and Find Full Text PDFCurr Opin Plant Biol
February 2017
The divergence of land plants followed by vascular plants has entirely changed the terrestrial ecology. The vascular system is a prerequisite for this evolutionary event, providing upright stature and communication for sink demand-source capacity and facilitating the development of plants and colonization over a wide range of environmental habitats. Various hormonal and non-hormonal regulatory networks have been identified and reviewed as key processes for vascular formation; however, how these factors have evolutionarily emerged and interconnected to trigger the emergence of the vascular system still remains elusive.
View Article and Find Full Text PDFBackground: In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana.
View Article and Find Full Text PDF