Publications by authors named "Tuomo Starck"

Objectives: Paraplegia is a devastating complication in aortic aneurysm surgery. Modifying the spinal cord vasculature is a promising method in spinal cord protection. The aim of this study was to assess whether the spinal cord can be primed by occluding thoracic segmental arteries before simulated aneurysm repair in a porcine model.

View Article and Find Full Text PDF

Surgical repair of thoracic aorta can compromise blood flow of the spinal cord. To mitigate spinal cord ischemia (SCI) additional protection methods are needed. In experimental studies remote ischemic preconditioning (RIPC) has proven to be an effective method of protecting organs from ischemia.

View Article and Find Full Text PDF

Objective: Our goal was to discover attention- and inhibitory control-related differences in the main oscillations of the brain of children who stutter (CWS) compared to typically developed children (TDC).

Methods: We performed a time-frequency analysis using wavelets, fast Fourier transformation (FFT) and the Alpha/Theta power ratio of EEG data collected during a visual Go/Nogo task in 7-9 year old CWS and TDC, including also the time window between consecutive tasks.

Results: CWS showed significantly reduced occipital alpha power and Alpha/Theta ratio in the "resting" or preparatory period between visual stimuli especially in the Nogo condition.

View Article and Find Full Text PDF

Background: Paraplegia is one of the most severe complications occurring after the repair of thoracic and thoracoabdominal aortic aneurysms. Remote ischemic preconditioning (RIPC) has been shown to mitigate neurologic damage, and this study assessed its efficacy in preventing spinal cord ischemia.

Methods: The study randomized 16 female pigs into an RIPC group (n = 8) and a control group (n = 8).

View Article and Find Full Text PDF

Objective: Surgical repair of thoracoabdominal aneurysm jeopardizes the vascularization of the spinal cord, and therefore, despite improvement in surgical techniques, still carries the risk of paraplegia. This study aimed to demonstrate the possible protective effects of remote ischemic preconditioning (RIPC) on the preservation of spinal cord function after segmental artery (SA) occlusion.

Methods: Twenty piglets were randomized into the RIPC group (n = 10) and the control group (n = 10).

View Article and Find Full Text PDF

Background And Aims: The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy.

Methods: Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21).

View Article and Find Full Text PDF

Objectives: Seasonal affective disorder (SAD) is a subtype of recurrent unipolar or bipolar depressive disorder with a higher prevalence in winter than in summer. The biological underpinnings of SAD are so far poorly understood. Studies examining SAD have found disturbances between the molecular and connectivity scales.

View Article and Find Full Text PDF

Background: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique enabling visualization and measurement of white matter tracts. Attention deficit hyperactivity disorder (ADHD) has been studied with DTI earlier with variable results, yet there is little research on remitted ADHD.

Purpose: To compare the brain white matter between ADHD drug naïve subjects whose ADHD symptoms have mostly subsided and healthy controls.

View Article and Find Full Text PDF

Studies show evidence of longitudinal brain volume decreases in schizophrenia. We studied brain volume changes and their relation to symptom severity, level of function, cognition, and antipsychotic medication in participants with schizophrenia and control participants from a general population based birth cohort sample in a relatively long follow-up period of almost a decade. All members of the Northern Finland Birth Cohort 1966 with any psychotic disorder and a random sample not having psychosis were invited for a MRI brain scan, and clinical and cognitive assessment during 1999-2001 at the age of 33-35 years.

View Article and Find Full Text PDF
Article Synopsis
  • Ongoing neural activity in the central nervous system (CNS) shows spontaneous fluctuations that can be observed through BOLD signals in fMRI and consistently appear in specific brain networks.
  • Both fast oscillation dynamics and scalp potential fluctuations occur within a similar low-frequency range, leading to questions about their relationship.
  • Using simultaneous fbEEG and fMRI, the study found that infra-slow fluctuations in scalp potentials correlate with specific BOLD signals in defined resting-state networks, suggesting that these potentials reflect underlying changes in neuronal activity levels.
View Article and Find Full Text PDF

In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion.

View Article and Find Full Text PDF

Subject-level resting-state fMRI (RS-fMRI) spatial independent component analysis (sICA) may provide new ways to analyze the data when performed in the sliding time window. However, whether principal component analysis (PCA) and voxel-wise variance normalization (VN) are applicable pre-processing procedures in the sliding-window context, as they are for regular sICA, has not been addressed so far. Also model order selection requires further studies concerning sliding-window sICA.

View Article and Find Full Text PDF

At present, our knowledge about seasonal affective disorder (SAD) is based mainly up on clinical symptoms, epidemiology, behavioral characteristics and light therapy. Recently developed measures of resting-state functional brain activity might provide neurobiological markers of brain disorders. Studying functional brain activity in SAD could enhance our understanding of its nature and possible treatment strategies.

View Article and Find Full Text PDF

Functional resting-state connectivity has been shown to be altered in certain adult epilepsy populations, but few connectivity studies have been performed on pediatric epilepsy patients. Here functional connectivity was measured in pediatric, non-lesional temporal lobe epilepsy patients with normal intelligence and compared with that in age and gender-matched healthy controls using the independent component analysis method. We hypothesized that children with non-lesional temporal lobe epilepsy have disrupted functional connectivity within resting-state networks.

View Article and Find Full Text PDF

Background: Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis.

Purpose: To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data.

View Article and Find Full Text PDF

FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs.

View Article and Find Full Text PDF

Resting-state networks (RSNs) can be reliably and reproducibly detected using independent component analysis (ICA) at both individual subject and group levels. Altering ICA dimensionality (model order) estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders.

View Article and Find Full Text PDF

Recent evidence on resting-state networks in functional (connectivity) magnetic resonance imaging (fcMRI) suggests that there may be significant spatial variability of activity foci over time. This study used a sliding time window approach with the spatial domain-independent component analysis (SliTICA) to detect spatial maps of resting-state networks over time. The study hypothesis was that the spatial distribution of a functionally connected network would present marked variability over time.

View Article and Find Full Text PDF

Recent findings on intracortical EEG measurements show that the synchrony of localized neuronal networks is altered in epileptogenesis, leading to generalized seizure activity via connector hubs in the neuronal networks. Regional homogeneity (ReHo) analysis of blood oxygen level-dependent (BOLD) signals has demonstrated localized signal synchrony and disease-related alterations in a number of instances. We wanted to find out whether the ReHo of resting-state activity can be used to detect regional signal synchrony alterations in children with non-lesional temporal lobe epilepsy (TLE).

View Article and Find Full Text PDF

Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs.

View Article and Find Full Text PDF

This paper assessed the neural systems involved in processing of dynamic facial expressions in adolescents. The processing of facial expressions changes as a function of age, and it is thus important to understand how healthy adolescent subjects process dynamic facial expressions prior to analyzing disease-related changes. We hypothesized that viewing of dynamic facial expressions with opposing valences (happy vs.

View Article and Find Full Text PDF

Spatial independent components analysis (sICA) has become a widely applied data-driven method for fMRI data, especially for resting-state studies. These sICA approaches are often based on iterative estimation algorithms and there are concerns about accuracy due to noise. Repeatability measures such as ICASSO, RAICAR and ARABICA have been introduced as remedies but information on their effects on estimates is limited.

View Article and Find Full Text PDF

Independent component analysis (ICA) of functional MRI data is sensitive to model order selection. There is a lack of knowledge about the effect of increasing model order on independent components' (ICs) characteristics of resting state networks (RSNs). Probabilistic group ICA (group PICA) of 55 healthy control subjects resting state data was repeated 100 times using ICASSO repeatability software and after clustering of components, centrotype components were used for further analysis.

View Article and Find Full Text PDF

Measures assessing resting-state brain activity with blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) can reveal cognitive disorders at an early stage. Analysis of regional homogeneity (ReHo) measures the local synchronization of spontaneous fMRI signals and has been successfully utilized in detecting alterations in subjects with attention-deficit hyperactivity disorder (ADHD), depression, schizophrenia, Parkinson's disease and Alzheimer's dementia. Resting-state brain activity was investigated in 28 adolescents with autism spectrum disorders (ASD) and 27 typically developing controls being imaged with BOLD fMRI and analyzed with the ReHo method.

View Article and Find Full Text PDF

Confounding low-frequency fluctuation (LFF) physiological noise is a concern for functional connectivity analyses in blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Using estimates of LFF physiological noise derived from measured cardiac and respiration signals, noise can be filtered from the time series thus improving the results of functional connectivity analysis. The ability of spatial independent component analysis (ICA) to separate LFF physiological noise from the default mode network (DMN), which overlap each other spatially and occur at similar frequencies, has remained an open question.

View Article and Find Full Text PDF