Perception of light in darkness requires no more than a handful of photons, and this remarkable behavioral performance can be directly linked to a particular retinal circuit-the retinal ON pathway. However, the neural limits of shadow detection in very dim light have remained unresolved. Here, we unravel the neural mechanisms that determine the sensitivity of mice (CBA/CaJ) to light decrements at the lowest light levels by measuring signals from the most sensitive ON and OFF retinal ganglion cell types and by correlating their signals with visually guided behavior.
View Article and Find Full Text PDFCircadian clocks predictively adjust the physiology of organisms to the day/night cycle. The retina has its own clock, and many diurnal changes in its physiology have been reported. However, their implications for retinal functions and visually guided behavior are largely unresolved.
View Article and Find Full Text PDFAll sensory information is encoded in neural spike trains. It is unknown how the brain utilizes this neural code to drive behavior. Here, we unravel the decoding rules of the brain at the most elementary level by linking behavioral decisions to retinal output signals in a single-photon detection task.
View Article and Find Full Text PDF