Publications by authors named "Tuomas Alhonnoro"

Purpose: Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool for the treatment to help avoid incomplete treatment and so reduce the tumour recurrence risk. Although a few tools are available to predict the ablation lesion geometry, the process is computationally expensive.

View Article and Find Full Text PDF

In this contribution, we present a semi-automatic segmentation algorithm for radiofrequency ablation (RFA) zones via optimal s-t-cuts. Our interactive graph-based approach builds upon a polyhedron to construct the graph and was specifically designed for computed tomography (CT) acquisitions from patients that had RFA treatments of Hepatocellular Carcinomas (HCC). For evaluation, we used twelve post-interventional CT datasets from the clinical routine and as evaluation metric we utilized the Dice Similarity Coefficient (DSC), which is commonly accepted for judging computer aided medical segmentation tasks.

View Article and Find Full Text PDF

Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery.

View Article and Find Full Text PDF

The treatment of cancerous tumours in the liver remains clinically challenging, despite the wide range of treatment possibilities, including radio-frequency ablation (RFA), high-intensity focused ultrasound and resection, which are currently available. Each has its own advantages and disadvantages. For non- or minimally invasive modalities, such as RFA, considered here, it is difficult to monitor the treatment in vivo.

View Article and Find Full Text PDF

Histological investigation of a lesion induced by radiofrequency ablation (RFA) treatment provides ground-truth about the true lesion size, thus verifying the success or failure of the RFA treatment. This work presents a framework for registration of two-dimensional large-scale histological sections and three-dimensional CT data typically used to guide the RFA intervention. The focus is on the developed interactive methods for reconstruction of the histological volume data by fusion of histological and high-resolution CT (MicroCT) data and registration into CT data based on natural feature points.

View Article and Find Full Text PDF

In this paper, a novel segmentation method for liver vasculature is presented, intended for numerical simulation of radio frequency ablation (RFA). The developed method is a semiautomatic hybrid based on multi-scale vessel enhancement combined with ridge-oriented region growing and skeleton-based postprocessing. In addition, an interactive tool for segmentation refinement was developed.

View Article and Find Full Text PDF