Sentiment classification, which uses deep learning algorithms, has achieved good results when tested with popular datasets. However, it will be challenging to build a corpus on new topics to train machine learning algorithms in sentiment classification with high confidence. This study proposes a method that processes embedding knowledge in the ontology of opinion datasets called knowledge processing and representation based on ontology (KPRO) to represent the significant features of the dataset into the word embedding layer of deep learning algorithms in sentiment classification.
View Article and Find Full Text PDF