Conventional solid-based SERS substrates often face challenges with inconsistent sample distribution, while liquid-based SERS substrates are prone to aggregation and precipitation, resulting in irreproducible signals in both cases. In this study, we tackled this dilemma by designing and synthesizing raspberry-like plasmonic nanoaggregates that exhibit a high density of hotspots and are colloidally stable at the same time. In particular, the nanoaggregates consist of a core made of functionalized polystyrene (PS) microspheres, which act as a template for rapid self-assembly of Au@Ag core-shell nanoparticles to form raspberry-like hierarchical nanoaggregates within 5 min of mixing.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a promising technique for the detection of biomarkers, but it can struggle to quantify multiple analytes in complex fluids. This study combines electrochemical SERS (E-SERS) and machine learning for the quantitative multiplexed detection of uric acid (UA) and creatinine (CRN). Using classical polydisperse Ag nanoparticles (NPs) made by scalable synthesis, we achieved quantitative multiplexing with low limits of detection (LoDs) and high prediction accuracy, comparable to those made by sophisticated approaches.
View Article and Find Full Text PDFSafe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine.
View Article and Find Full Text PDFCreatinine is an important biomarker for the diagnosis of chronic kidney disease (CKD). Recently, it has been reported that the concentration of salivary creatinine correlates well with the concentration of serum creatinine, which makes the former useful for the development of non-invasive and point-of-care (POC) detection for CKD diagnosis. However, there exists a technical challenge in the rapid detection of salivary creatinine at low concentrations of 3-18 μM when using the current kidney function test strips as well as the traditional methods employed in hospitals.
View Article and Find Full Text PDFIntroduction: While new targeted therapies have advanced psoriasis treatment, real-world data on comparative effectiveness is lacking. This study analyzed treatment regimens and response in an observational cohort, examining potential disparities between clinical trials and routine practice.
Methods: Data from the Psoriasis Standardized Diagnosis and Treatment Center registry were analyzed.
Two-dimensional transition metal carbon/nitrides (MXenes) are promising candidates to revolutionize next-generation wearable sensors as high-performance surface-enhanced Raman scattering (SERS) substrates. However, low sensitivity of pure MXene nanosheets and weak binding force or uncontrolled in situ growth of plasmonic nanoparticles on hybrid MXene composites limit their progress toward universal and reliable sensors. Herein, we designed and manufactured a highly sensitive, structurally stable wearable SERS sensor by in situ fabrication of plasmonic nanostructures on the flexible TiVC membranes via the maximization of chemically reducing sites using alkaline treatment.
View Article and Find Full Text PDFResazurin (Alamar Blue, RZ) is a widely utilized fluorescent probe for biological sensing, whose fluorescent intensity can be modulated by changing its redox states; thereby, electrochemical reactivity of RZ is of significance when designing a sensing assay. Herein, we report novel two-way electrochemical reactivity modulation of RZ using host-guest complexation with rigid molecular containers cucurbit[]uril (CB, = 7, 8). The complexation between CB and RZ is confirmed by H NMR measurements and supported by computational simulation, and the binding constants are determined via UV-vis titration.
View Article and Find Full Text PDFCucurbiturils (CBs), barrel-shaped macrocyclic molecules, are capable of self-assembling at the surface of nanomaterials in their native state, via their carbonyl-ringed portals. However, the symmetrical two-portal structure typically leads to aggregated nanomaterials. We demonstrate that fluorescent quantum dot (QD) aggregates linked with CBs can be broken-up, retaining CBs adsorbed at their surface, via inclusion of guests in the CB cavity.
View Article and Find Full Text PDFDeveloping substrates that combine sensitivity and signal stability is a major challenge in surface enhanced Raman scattering (SERS) research. Herein, we present a flexible triple-enhanced Raman Scattering MXene/Au nanocubes (AuNCs) sensor fabricated by selective filtration of TiCT MXene/AuNCs hybrid on the TiCT MXene membrane and subsequent treatment with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS). The resultant superhydrophobic MXene/AuNCs-FOTS membrane not only provides the SERS substrate with environmental stability, but also imparts analyte enrichment to enhance the sensitivity (LOD = 1 × 10 M) and reliability (RSD = 6.
View Article and Find Full Text PDFIn the gas phase, thermal activation of supramolecular assemblies such as host-guest complexes leads commonly to noncovalent dissociation into the individual components. Chemical reactions, for example of encapsulated guest molecules, are only found in exceptional cases. As observed by mass spectrometry, when 1-amino-methyl-2,3-diazabicyclo[2.
View Article and Find Full Text PDFHigh sensitivity, good signal repeatability, and facile fabrication of flexible surface enhanced Raman scattering (SERS) substrates are common pursuits of researchers for the detection of probe molecules in a complex environment. However, fragile adhesion between the noble-metal nanoparticles and substrate material, low selectivity, and complex fabrication process on a large scale limit SERS technology for wide-ranging applications. Herein, we propose a scalable and cost-effective strategy to a fabricate sensitive and mechanically stable flexible TiCT MXene@graphene oxide/Au nanoclusters (MG/AuNCs) fiber SERS substrate from wet spinning and subsequent in situ reduction processes.
View Article and Find Full Text PDFTransparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSbO, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency.
View Article and Find Full Text PDFHeat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high-performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature.
View Article and Find Full Text PDFPilomatricoma (PM; calcifying epithelioma of Malherbe) is an uncommon adnexal tumour originating from the matrix of the hair follicles. Bullous appearance is a rare variant of PM, and its pathogenesis remains unclear. Here, we present a case of a 17-year-old girl with a pseudobullous PM on the right shoulder.
View Article and Find Full Text PDFSelf-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions).
View Article and Find Full Text PDFAryl diazonium ions are known to be an important intermediate in the divergent synthesis of azo compounds and substituted aromatics. The presence of more than one electrophilic center in a diazonium ion could lead to undesirable side reactions during a synthesis. Herein, we report that the electrophilic α-carbon on a phenyl diazonium [PhN] ion can be selectively deactivated upon host-guest complexation with cucurbit[7]uril (CB7) in aqueous media, achieving a ∼60-fold increase in the half-life of [PhN].
View Article and Find Full Text PDFSupramolecular complexes are of fundamental interests in biomedicines and adaptive materials, and thus facile methods to determine their binding affinity show usefulness in the design of novel drugs and materials. Herein, we report a novel approach to estimate the binding constants of cucurbit[8]uril-methyl viologen-based ternary complexes (CB8-MV-G2) using electrochemistry, achieving high precision (±0.03) and practical accuracy (±0.
View Article and Find Full Text PDFIncorporating plasmonic nanostructures is a promising strategy to enhance both the optical and electrical characteristics of photovoltaic devices via more efficient harvesting of incident light. Herein, we report a facile fabrication scheme at low temperature for producing gold nanoparticles embedded in anatase TiO films, which can simultaneously improve the efficiency and stability of n-i-p planar heterojunction perovskite solar cells (PSCs). The PSCs based on rigid and flexible substrates with 0.
View Article and Find Full Text PDFThis work describes a rapid and highly sensitive method for the quantitative detection of an important biomarker, uric acid (UA), via surface-enhanced Raman spectroscopy (SERS) with a low detection limit of ~0.2 μM for multiple characteristic peaks in the fingerprint region, using a modular spectrometer. This biosensing scheme is mediated by the host-guest complexation between a macrocycle, cucurbit[7]uril (CB7), and UA, and the subsequent formation of precise plasmonic nanojunctions within the self-assembled Au NP: CB7 nanoaggregates.
View Article and Find Full Text PDFThe ability of cucurbit[6]uril () and cucurbit[7]uril () to catalyze the thermally activated 1,2-methyl shift isomerization pathway of -xylene in vacuum is investigated using infrequent metadynamics. is predicted to effectively and selectively catalyze the meta-to-para isomerization through stabilization of the transition state (TS) by van der Waals push (packing coefficient ≈74%), while inhibiting the meta-to-ortho pathway by molding effects of the cavity. Interestingly, despite the snug binding, a very low rate of host-guest vibrational energy transfer is revealed using a novel approach of host-guest partition of the mode-specific anharmonic relaxation rates and molecular dynamics.
View Article and Find Full Text PDFWe demonstrate that the reproducibility of sensors for nitroaromatics based on surface-enhanced Raman spectroscopy (SERS) can be significantly improved via a hierarchical aqueous self-assembly approach mediated by the multifunctional macrocyclic molecule cucurbit[7]uril (CB[7]). Our approach is enabled by the novel host-guest complexation between CB[7] and an explosive marker 2,4-dinitrotoluene (DNT). Binding studies are performed using experimental and computation techniques to quantify key binding parameters for the first time.
View Article and Find Full Text PDFCucurbit[7]uril (CB[7]) is an artificial macrocyclic molecule that can form exceptionally strong host-guest complexes with binding constants higher than that of the biotin-avidin complex. Despite notable experimental efforts, there do not exist large-scale computational investigations on finding strongly binding guests of CB[7]. Herein, we develop a computational approach based on large-scale molecular modelling to predict strongly binding hydrocarbon motifs.
View Article and Find Full Text PDFSelf-assembled nanoparticles have important applications in energy systems, optical devices and sensors, via the formation of aggregates with controlled interparticle spacing. Here we report aqueous self-assembly of rigid macrocycle cucurbit[7]uril (CB[7]) and fluorescent quantum dots (QDs), and demonstrate the potential of the system for efficient energy transfer and sensing of small molecules.
View Article and Find Full Text PDF