Publications by authors named "Tung-Yung Fan"

Climate change is affecting the survival, growth, and recruitment of corals globally, with large-scale shifts in abundance and community composition expected in reef ecosystems over the next several decades. Recognition of this reef degradation has prompted a range of novel research- and restoration-based active interventions. Ex situ aquaculture can play a supporting role through the establishment of robust coral culture protocols (e.

View Article and Find Full Text PDF

Ocean warming and marine heatwaves induced by climate change are impacting coral reefs globally, leading to coral bleaching and mortality. Yet, coral resistance and resilience to warming are not uniform across reef sites and corals can show inter- and intraspecific variability. To understand changes in coral health and to elucidate mechanisms of coral thermal tolerance, baseline data on the dynamics of coral holobiont performance under non-stressed conditions are needed.

View Article and Find Full Text PDF

Global reef degradation is a critical environmental health issue that has triggered intensive research on ocean warming, but the implications of emerging contaminants in coral habitats are largely overlooked. Laboratory experiments assessing organic ultraviolet (UV) filter exposure have shown that these chemicals negatively affect coral health; their ubiquitous occurrence in association with ocean warming may pose great challenges to coral health. We investigated both short- (10-day) and long-term (60-day) single and co-exposures of coral nubbins to environmentally relevant organic UV filter mixtures (200 ng/L of 12 compounds) and elevated water temperatures (30 °C) to investigate their effects and potential mechanisms of action.

View Article and Find Full Text PDF

Unlabelled: Ocean warming induced by climate change is the greatest threat to the persistence of coral reefs globally. Given the current rate of ocean warming, there may not be sufficient time for natural acclimation or adaptation by corals. This urgency has led to the exploration of active management techniques aimed at enhancing thermal tolerance in corals.

View Article and Find Full Text PDF

There is an urgent need to develop means of ex situ biobanking and biopreserving corals and other marine organisms whose habitats have been compromised by climate change and other anthropogenic stressors. To optimize laboratory growth of soft corals in a way that could also benefit industry (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Reef-building corals like Pocillopora acuta need both food and light to thrive, using heterotrophy and symbiotic relationships for energy.
  • In an experiment, corals were fed brine shrimp and exposed to different light levels to analyze their growth and health over 140 days.
  • Results showed that fed corals grew significantly faster and healthier, especially under the highest light levels, suggesting that feeding brine shrimp in aquaculture can enhance coral cultivation.
View Article and Find Full Text PDF

The coral-associated are dominant bacteria in the coral holobiont. Their relative abundance usually decreases with heat-induced coral bleaching and is proposed to be positively correlated with Symbiodiniaceae abundance. It remains unclear whether this phenomenon of decreased abundance is caused by temperature stress or a decreased abundance of Symbiodiniaceae.

View Article and Find Full Text PDF

Temporal variation in seawater temperature plays a crucial role in coral reef ecology. Nanwan Bay, Southern Taiwan is home to well-developed coral reefs, which frequently experience cold-water intrusions caused by internal wave-induced upwelling, that manifest in distinct daily temperature minima. These temperature minima and their associated sources were studied by recording in situ bottom temperatures and sea levels observed at depths of 5 and 30 m from May 2007 to September 2008.

View Article and Find Full Text PDF

Corals are exposed to organic ultraviolet (UV) filters and other personal care product (PCP) ingredients in the environment, but the toxicities of organic UV filters and their related PCP to corals are not well understood. In this study, 7-day exposures were conducted to evaluate the toxicities and bioaccumulation of two organic UV filters, ethylhexylmethoxy-cinnamate (EHMC; octinoxate) and octocrylene (OC) (single- and combined-chemical tests), and diluted sunscreen wash-off water containing both active ingredients to the adult life stage of two hard coral species, Seriatopora caliendrum and Pocillopora damicornis. In the single-chemical tests, death (33.

View Article and Find Full Text PDF

The benzophenone (BP) organic ultraviolet (UV) filters have been measured in seawater at ng/L to μg/L levels, but more data on their effects in non-target marine organisms are needed. Corals can be exposed to BPs due to wastewater discharges and coastal recreational activities. In this study, toxicities and bioaccumulation of BP-1 (2,4-dihydroxybenzophenone), BP-3 (oxybenzone), BP-4 (sulisobenzone) and BP-8 (dioxybenzone) to larvae and adults of two coral species, Pocillopora damicornis and Seriatopora caliendrum, were assessed at concentrations ranging from 0.

View Article and Find Full Text PDF

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series.

View Article and Find Full Text PDF

Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Early life stages of marine invertebrates, particularly larvae, are sensitive to environmental changes, affecting their survival.
  • Larvae from two locations, Moorea and Taiwan, exhibited different responses to stressors like increased temperature and ocean acidification, with Taiwan larvae being more vulnerable to temperature changes.
  • The study highlights that parental traits and environmental conditions shape larval energy storage and physiological responses, suggesting that diverse adaptations may help these species cope with global climate change.
View Article and Find Full Text PDF

On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans.

View Article and Find Full Text PDF

Coral reefs are vulnerable to ultraviolet radiation (UVR, 280-400nm). Not only do the fluxes of UVR fluctuate daily, they are also increasing due to global ocean and atmospheric changes. The deleterious effects of UVR on scleractinian corals have been intensively studied, but much less is known about the response of corals in the early pre-settlement phase.

View Article and Find Full Text PDF

Ultraviolet radiation (UVR, 280-400 nm) is one of the potential factors involved in the induction of coral bleaching, loss of the endosymbiotic dinoflagellate Symbiodinium or their photosynthetic pigments. However, little has been documented on its effects on the behavior and recruitment of coral larvae, which sustains coral reef ecosystems. Here, we analyzed physiological changes in larvae of the scleractinian coral Pocillopora damicornis and examined the photophysiological performance of the symbiont algae, following exposure to incident levels of UVR and subsequently observed the development of coral larvae.

View Article and Find Full Text PDF

The coral mucus may harbor commensal bacteria that inhibit growth of pathogens. Therefore, there is a need to understand the dynamics of bacterial communities between the coral mucus and tissues. Nubbins of Acropora muricata were subjected to increasing water temperatures of 26°C-33°C, to simultaneously explore the bacterial diversity in coral mucus and tissues by 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

Examining genetic diversity and lineage sorting of different genes in closely related species provide useful information for phylogenetic analyses and ultimately for understanding the origins of biodiversity. In this study, we examined inter- and intraspecific genetic variation in internal transcribed spacer 2 (ITS2), partial mitochondrial gene (mtMutS), and nuclear microsatellite flanking region in two closely related octocoral species (Heliopora coerulea, HC-A and HC-B). These species were recently identified in a population genetic study using microsatellite markers.

View Article and Find Full Text PDF

Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs.

View Article and Find Full Text PDF

Fine sediments, which account for the majority of total fluvial sediment flux, have been suggested to degrade coral reefs on a global scale. Furthermore, sediment impacts can be exacerbated by extreme rainfall events associated with global climate change and anthropogenic nutrient enrichment. We report the findings from a series of mesocosm experiments exploring the effects of short-term sedimentation and nutrient enrichment on the interactions between the hard coral Acropora muricata, the sea anemone Mesactinia ganesis, and the green macroalga Codium edule.

View Article and Find Full Text PDF

Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown.

View Article and Find Full Text PDF

The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance.

View Article and Find Full Text PDF

In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method.

View Article and Find Full Text PDF

Intracellular lipid droplets (LDs) have been proposed to play a key role in the mutualistic endosymbiosis between reef-building corals and the dinoflagellate endosymbiont Symbiodinium spp. This study investigates and identifies LD proteins in Symbiodinium from Euphyllia glabrescens. Discontinuous Percoll gradient centrifugation was used to separate Symbiodinium cells from E.

View Article and Find Full Text PDF

Scleractinian corals vary in response to rapid shifts in the marine environment and changes in reef community structure post-disturbance reveal a clear relationship between coral performance and morphology. With exceptions, massive corals are thought to be more tolerant and branching corals more vulnerable to changing environmental conditions, notably thermal stress. The typical responses of massive and branching coral taxa, respectively, are well documented; however, the biological and functional characteristics that underpin this variation are not well understood.

View Article and Find Full Text PDF