High-entropy-alloy (HEA) nanocrystals hold immense potential for catalysis, offering virtually unlimited alloy combinations through the inclusion of at least five constituent elements in varying ratios. However, general and effective strategies for synthesizing libraries of HEA nanocrystals with controlled surface atomic structures remain scarce. In this study, a transferable strategy for developing a library of facet-controlled seed@HEA nanocrystals through seed-mediated growth is presented.
View Article and Find Full Text PDFAccelerating the alkaline hydrogen evolution reaction (HER), which involves the slow cleavage of HO-H bonds and the adsorption/desorption of hydrogen (H*) and hydroxyl (OH*) intermediates, requires developing catalysts with optimal binding strengths for these intermediates. Here, the unconventional hexagonal close-packed (HCP) high-entropy alloy (HEA) atomic layers are prepared composed of five platinum-group metals to enhance the alkaline HER synergistically. The breakthrough is made by layer-by-layer heteroepitaxial deposition of subnanometer RuRhPdPtIr HEA layers on the HCP Ru seeds, despite the thermodynamic stability of Rh, Pd, Pt, and Ir in a face-centered cubic (FCC) structure except for Ru.
View Article and Find Full Text PDFWe report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts.
View Article and Find Full Text PDFHigh-entropy alloy (HEA) nanocrystals have attracted extensive attention in catalysis. However, there are no effective strategies for synthesizing them in a controllable and predictable manner. With quinary HEA nanocrystals made of platinum-group metals as an example, we demonstrate that their structures with spatial compositions can be predicted by quantitatively knowing the reduction kinetics of metal precursors and entropy of mixing in the nanocrystals under dropwise addition of the mixing five-metal precursor solution.
View Article and Find Full Text PDFConspectusSurface ligands are vital to the colloidal synthesis of noble-metal nanocrystals with well-controlled sizes and shapes for various applications. The surface ligands not only dictate the formation of nanocrystals with diverse shapes but also serve as a colloidal stabilizer to prevent the suspended nanocrystals from aggregation during their synthesis or storage. By leveraging the facet selectivity of some surface ligands, one can further control the sites for growth or galvanic replacement to transform presynthesized nanocrystals into complex structures that are otherwise difficult to fabricate using conventional methods.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
Current imaging methods used to examine patients with subacromial impingement syndrome (SIS) are limited by their semi-quantitative nature and their capability of capturing dynamic movements. This study aimed to develop a quantitative analytic model to assess subacromial motions using dynamic ultrasound and to examine their reliability and potential influencing factors. We included 48 healthy volunteers and examined their subacromial motions with dynamic ultrasound imaging.
View Article and Find Full Text PDFThe ligands anchored to the surface of metal nanocrystals play an important role in controlling their colloidal synthesis for a broad spectrum of applications, but it remains a daunting challenge to investigate the ligand-surface and ligand-solvent interactions at the molecular level. Here, we report the use of surface-enhanced Raman scattering (SERS) to extract structural information about the binding of poly(vinylpyrrolidone) (PVP) to Ag nanocubes as well as its conformational changes in response to solvent quality. When a PVP chain binds to the surface of a Ag nanocube through some of its carbonyl groups, the segments between adjacent binding sites are expelled into the solvent as loops.
View Article and Find Full Text PDFNoble-metal nanoframes consisting of interconnected, ultrathin ridges have received considerable attention in the field of heterogeneous catalysis. The enthusiasm arises from the high utilization efficiency of atoms for significantly reducing the material loading while enhancing the catalytic performance. In this review article, we offer a comprehensive assessment of research endeavors in the design and rational synthesis of noble-metal nanoframes for applications in catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2020
Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well-controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals.
View Article and Find Full Text PDFThe rational design and implementation of a one-pot method is reported for the facile synthesis of Pd@Pt (nL denotes the number of Pt atomic layers) core-shell icosahedral nanocrystals in a single step. The success of this method relies on the use of Na PdCl and Pt(acac) as the precursors to Pd and Pt atoms, respectively. Our quantitative analysis of the reduction kinetics indicates that the Pd and Pt precursors are sequentially reduced with a major gap between the two events.
View Article and Find Full Text PDFWe report an indirect method for the effective replacement of ligands on the surface of Au nanocrystals with different morphologies. The method involves the deposition of an ultrathin layer of Ag to remove a strong capping agent such as cetyltrimethylammonium chloride (CTAC), followed by selective etching of the Ag layer in the presence of citrate ions as a stabilizer. Using multiple characterization techniques, we confirm that the surface of the Au nanocrystals is covered by citrate ions after the indirect ligand exchange process, and there is essentially no aggregation during the entire process.
View Article and Find Full Text PDFThere is a growing interest in controlling the synthesis of colloidal metal nanocrystals and thus tailoring their properties toward various applications. In this context, choosing an appropriate combination of reagents (e.g.
View Article and Find Full Text PDFShape-controlled synthesis of colloidal metal nanocrystals has traditionally relied on the use of an approach that involves the reduction of a metal precursor by a single reductant. Once the concentration of atoms surpasses supersaturation, they will undergo homogeneous nucleation to generate nuclei and then seeds, followed by further growth into nanocrystals. In general, it is a grand challenge to optimize such an approach because the kinetic requirement for nucleation tends to be drastically different from what is needed to guide the growth process.
View Article and Find Full Text PDFThe growth of colloidal metal nanocrystals typically involves an autocatalytic process, in which the salt precursor adsorbs onto the surface of a growing nanocrystal, followed by chemical reduction to atoms for their incorporation into the nanocrystal. Despite its universal role in the synthesis of colloidal nanocrystals, it is still poorly understood and controlled in terms of kinetics. Through the use of well-defined nanocrystals as seeds, including those with different types of facets, sizes, and internal twin structure, here we quantitatively analyze the kinetics of autocatalytic surface reduction in an effort to control the evolution of nanocrystals into predictable shapes.
View Article and Find Full Text PDFDespite the incredible developments made to the synthesis of colloidal metal nanocrystals, it is still challenging to produce them in a reproducible and predictable manner. This drawback can be attributed to the fact that the protocols continue to be built upon qualitative observations and empirical laws. Because of the vast number of intricately entangled experimental parameters in a synthesis, it is almost impossible to predict and control the outcome by knowingly alternating these parameters.
View Article and Find Full Text PDFDespite the remarkable success in controlling the synthesis of metal nanocrystals, it still remains a grand challenge to stabilize and preserve the shapes or internal structures of metastable kinetic products. In this work, we address this issue by systematically investigating the surface and bulk reconstructions experienced by a Pd concave icosahedron when subjected to heating up to 600 °C in vacuum. We used in situ high-resolution transmission electron microscopy to identify the equilibration pathways of this far-from-equilibrium structure.
View Article and Find Full Text PDFDespite the pivotal role played by the reduction of a salt precursor in the synthesis of metal nanocrystals, it is still unclear how the precursor is reduced. The precursor can be reduced to an atom in the solution phase, followed by its deposition onto the surface of a growing nanocrystal. Alternatively, the precursor can adsorb onto the surface of a growing nanocrystal, followed by reduction through an autocatalytic process.
View Article and Find Full Text PDFWe report a quantitative understanding of the reduction kinetics responsible for the formation of Pd-Pt bimetallic nanocrystals with two distinctive structures. The syntheses involve the use of KBr to manipulate the reaction kinetics by influencing the redox potentials of metal precursor ions via ligand exchange. In the absence of KBr, the ratio between the initial reduction rates of PdCl4(2-) and PtCl4(2-) was about 10.
View Article and Find Full Text PDFWe fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm.
View Article and Find Full Text PDFPhotodegradation of organic pollutants in aqueous solution is a promising method for environmental purification. Photocatalysts capable of promoting this reaction are often composed of noble metal nanoparticles deposited on a semiconductor. Unfortunately, the separation of these semiconductor-metal nanopowders from the treated water is very difficult and energy consumptive, so their usefulness in practical applications is limited.
View Article and Find Full Text PDFIn this work, template-assisted methods were adopted to grow BiFeO3 (BFO)-nanorod arrays on substrates. Well-aligned ZnO-nanorod arrays (ZNAs) grown hydrothermally were chosen as positive templates. It was found that perovskite BFO could not be radio frequency (RF)-magnetron sputtered directly on a ZNA at elevated temperatures.
View Article and Find Full Text PDF