Publications by authors named "Tung M Luu"

This paper considers a network referred to as SoftGroup for accurate and scalable 3D instance segmentation. Existing state-of-the-art methods produce hard semantic predictions followed by grouping instance segmentation results. Unfortunately, errors stemming from hard decisions propagate into the grouping, resulting in poor overlap between predicted instances and ground truth and substantial false positives.

View Article and Find Full Text PDF

In an attempt to overcome the limitations of reward-driven representation learning in vision-based reinforcement learning (RL), an unsupervised learning framework referred to as the visual pretraining via contrastive predictive model (VPCPM) is proposed to learn the representations detached from the policy learning. Our method enables the convolutional encoder to perceive the underlying dynamics through a pair of forward and inverse models under the supervision of the contrastive loss, thus resulting in better representations. In experiments with a diverse set of vision control tasks, by initializing the encoders with VPCPM, the performance of state-of-the-art vision-based RL algorithms is significantly boosted, with 44% and 10% improvement for RAD and DrQ at 100 steps, respectively.

View Article and Find Full Text PDF