Publications by authors named "Tunes M"

Potential applications of nanomaterials range from electronics to environmental technology, thus a better understanding of their manufacturing and manipulation is of paramount importance. The present study demonstrates a methodology for the use of metallic nanomaterials as reactants to examine nanoalloying within a transmission electron microscope. The method is further utilised as a starting point of a metallurgical toolbox, to study subsequent alloying of materials by using a nanoscale-sized chemical reactor for nanometallurgy.

View Article and Find Full Text PDF

In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.

View Article and Find Full Text PDF

Objective: To evaluate the prognostic utility of quick Sepsis-related Organ Failure Assessment (qSOFA) for prediction of in-hospital mortality and length of hospitalization in dogs with pyometra.

Design: Retrospective cohort study from February 2013 to April 2019 SETTING: Tertiary referral hospital ANIMALS: Fifty-two dogs referred with confirmed diagnosis of pyometra INTERVENTIONS: None MEASUREMENTS AND PRINCIPAL OUTCOMES: Sixty-five percent of dogs survived to discharge. A cut-off score of ≥2 for qSOFA was associated with in-hospital mortality (odds ratio 6.

View Article and Find Full Text PDF

In the field of radiation damage of crystalline solids, new highly-concentrated alloys (HCAs) are now considered to be suitable candidate materials for next generation fission/fusion reactors due to recently recorded outstanding radiation tolerance. Despite the preliminarily reported extraordinary properties, the mechanisms of degradation, phase instabilities and decomposition of HCAs are still largely unexplored fields of research. Herein, we investigate the response of a nanocrystalline CoCrCuFeNi HCA to thermal annealing and heavy ion irradiation in the temperature range from 293 to 773 K with the objective to analyze the stability of the nanocrystalline HCA in extreme conditions.

View Article and Find Full Text PDF

A dual-phase CrAlC material was synthesized using magnetron sputtering at a temperature of 648 K. A stoichiometric and nanocrystalline MAX phase matrix was observed along with the presence of spherical-shaped amorphous nano-zones as a secondary phase. The irradiation resistance of the material was assessed using a 300-keV Xe ion beam in situ within a transmission electron microscope up to 40 displacements per atom at 623 K: a condition that extrapolates the harmful environments of future fusion and fission nuclear reactors.

View Article and Find Full Text PDF

Microelectromechanical systems (MEMS) are currently supporting ground-breaking basic research in materials science and metallurgy as they allow in situ experiments on materials at the nanoscale within electron microscopes in a wide variety of different conditions such as extreme materials dynamics under ultrafast heating and quenching rates as well as in complex electro-chemical environments. Electron-transparent sample preparation for MEMS e-chips remains a challenge for this technology as the existing methodologies can introduce contaminants, thus disrupting the experiments and the analysis of results. Herein we introduce a methodology for simple and fast electron-transparent sample preparation for MEMS e-chips without significant contamination.

View Article and Find Full Text PDF

The existing literature data shows that conventional aluminium alloys may not be suitable for use in stellar-radiation environments as their hardening phases are prone to dissolve upon exposure to energetic irradiation, resulting in alloy softening which may reduce the lifetime of such materials impairing future human-based space missions. The innovative methodology of crossover alloying is herein used to synthesize an aluminium alloy with a radiation resistant hardening phase. This alloy-a crossover of 5xxx and 7xxx series Al-alloys-is subjected to extreme heavy ion irradiations in situ within a TEM up to a dose of 1 dpa and major experimental observations are made: the Mg(Zn,Al) hardening precipitates (denoted as T-phase) for this alloy system surprisingly survive the extreme irradiation conditions, no cavities are found to nucleate and displacement damage is observed to develop in the form of black-spots.

View Article and Find Full Text PDF

In this work, ion irradiations in-situ of a transmission electron microscope are performed on single-crystal germanium specimens with either xenon, krypton, argon, neon or helium. Using analysis of selected area diffraction patterns and a custom implementation of the Stopping and Range of Ions in Matter (SRIM) within MATLAB (which allows both the 3D reconstruction of the collision cascades and the calculation of the density of vacancies) the mechanisms behind amorphization are revealed. An intriguing finding regarding the threshold displacements per atom (dpa) required for amorphization results from this study: even though the heavier ions generate more displacements than lighter ions, it is observed that the threshold dpa for amorphization is lower for the krypton-irradiated specimens than for the xenon-irradiated ones.

View Article and Find Full Text PDF

Grain growth and phase stability of a nanocrystalline face-centered cubic (fcc) NiFeCoCrCu high-entropy alloy (HEA), either thermally- or irradiation-induced, are investigated through in situ and post-irradiation transmission electron microscopy (TEM) characterization. Synchrotron and lab x-ray diffraction measurements are carried out to determine the microstructural evolution and phase stability with improved statistics. Under in situ TEM observation, the fcc structure is stable at 300 °C with a small amount of grain growth from 15.

View Article and Find Full Text PDF

The miniaturisation of technology increasingly requires the development of both new structures as well as novel techniques for their manufacture and modification. Semiconductor nanowires (NWs) are a prime example of this and as such have been the subject of intense scientific research for applications ranging from microelectronics to nano-electromechanical devices. Ion irradiation has long been a key processing step for semiconductors and the natural extension of this technique to the modification of semiconductor NWs has led to the discovery of ion beam-induced deformation effects.

View Article and Find Full Text PDF