Short tandem repeat (STR) polymorphisms are traditionally assessed by measuring allele lengths via capillary electrophoresis (CE). Massively parallel sequencing (MPS) reveals differences among alleles of the same length, thus improving discrimination, but also identifying groups of alleles likely related by descent. These may have relatively restricted geographical distributions and thus MPS could detect population structure more effectively than CE-based analysis.
View Article and Find Full Text PDFThis manuscript reports Y-chromosomal short tandem repeat (Y-STR) haplotypes for 1032 male U.S. population samples across 30 Y-STR loci characterized by three capillary electrophoresis (CE) length-based kits (PowerPlex Y23 System, Yfiler Plus PCR Amplification Kit, and Investigator Argus Y-28 QS Kit) and one sequence-based kit (ForenSeq DNA Signature Prep Kit): DYF387S1, DYS19, DYS385 a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS449, DYS456, DYS458, DYS460, DYS481, DYS505, DYS518, DYS522, DYS533, DYS549, DYS570, DYS576, DYS612, DYS627, DYS635, DYS643, and Y-GATA-H4.
View Article and Find Full Text PDFThe top challenges of adopting new methods to forensic DNA analysis in routine laboratories are often the capital investment and the expertise required to implement and validate such methods locally. In the case of next-generation sequencing, in the last decade, several specifically forensic commercial options became available, offering reliable and validated solutions. Despite this, the readily available expertise to analyze, interpret and understand such data is still perceived to be lagging behind.
View Article and Find Full Text PDFSequence analysis of the mitochondrial DNA (mtDNA) control region can provide forensically useful information, particularly in challenging samples where autosomal DNA profiling fails. Sub-division of the 1122-bp region into shorter PCR fragments improves data recovery, and such fragments can be analysed together via massively parallel sequencing (MPS). Here, we generate mtDNA data using the prototype PowerSeq™ Auto/Mito/Y System (Promega) MPS assay, in which a single PCR reaction amplifies ten overlapping amplicons of the control region, in a set of 101 highly diverse samples representing most major clades of the mtDNA phylogeny.
View Article and Find Full Text PDFShort tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega's prototype PowerSeq™ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.
View Article and Find Full Text PDF