Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, driven mainly by chronic hepatitis infections and metabolic disorders, which highlights the urgent need for novel therapeutic strategies. Sirtuins, particularly SIRT1 are crucial in HCC pathogenesis, making it a promising drug target. Indole-based molecules show potential as therapeutic agents by interacting with key proteins like sirtuins involved in cancer progression.
View Article and Find Full Text PDFIdentifying unknown functional properties of proteins is essential for understanding their roles in both health and disease states. The domain composition of a protein can reveal critical information in this context, as domains are structural and functional units that dictate how the protein should act at the molecular level. The expensive and time-consuming nature of wet-lab experimental approaches prompted researchers to develop computational strategies for predicting the functions of proteins.
View Article and Find Full Text PDFNon-silent single nucleotide genetic variants, like nonsense changes and insertion-deletion variants, that affect protein function and length substantially are prevalent and are frequently misclassified. The low sensitivity and specificity of existing variant effect predictors for nonsense and indel variations restrict their use in clinical applications. We propose the Pathogenic Mutation Prediction (PMPred) method to predict the pathogenicity of single nucleotide variations, which impair protein function by prematurely terminating a protein's elongation during its synthesis.
View Article and Find Full Text PDFComput Struct Biotechnol J
September 2023
Background: Genomic variations may cause deleterious effects on protein functionality and perturb biological processes. Elucidating the effects of variations is critical for developing novel treatment strategies for diseases of genetic origin. Computational approaches have been aiding the work in this field by modeling and analyzing the mutational landscape.
View Article and Find Full Text PDFMotivation: Utilizing AI-driven approaches for drug-target interaction (DTI) prediction require large volumes of training data which are not available for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between drug candidate compounds and understudied target proteins with scarce training data. The idea here is to first train a deep neural network classifier with a generalized source training dataset of large size and then to reuse this pre-trained neural network as an initial configuration for re-training/fine-tuning purposes with a small-sized specialized target training dataset.
View Article and Find Full Text PDFThe identification of drug/compound-target interactions (DTIs) constitutes the basis of drug discovery, for which computational predictive approaches have been developed. As a relatively new data-driven paradigm, proteochemometric (PCM) modeling utilizes both protein and compound properties as a pair at the input level and processes them via statistical/machine learning. The representation of input samples (i.
View Article and Find Full Text PDFAs the number of protein sequences increases in biological databases, computational methods are required to provide accurate functional annotation with high coverage. Although several machine learning methods have been proposed for this purpose, there are still two main issues: (i) construction of reliable positive and negative training and validation datasets, and (ii) fair evaluation of their performances based on predefined experimental settings. To address these issues, we have developed ProFAB: Open Protein Functional Annotation Benchmark, which is a platform providing an infrastructure for a fair comparison of protein function prediction methods.
View Article and Find Full Text PDFExpert Opin Drug Discov
December 2022
Background: Drug development productivity has been declining lately due to elevated costs and reduced discovery rates. Therefore, pharmaceutical companies have been seeking alternative ways to determine and evaluate drug candidates.
Research Design And Methods: In this work, we proposed a new computational approach to directly predict the regulatory approval of drug candidates, and implemented it as a method called 'DrugApp.
Summary: Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location.
View Article and Find Full Text PDFPurpose: Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine.
Methods: In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing.
Predictive approaches such as virtual screening have been used in drug discovery with the objective of reducing developmental time and costs. Current machine learning and network-based approaches have issues related to generalization, usability, or model interpretability, especially due to the complexity of target proteins' structure/function, and bias in system training datasets. Here, we propose a new method "DRUIDom" (DRUg Interacting Domain prediction) to identify bio-interactions between drug candidate compounds and targets by utilizing the domain modularity of proteins, to overcome problems associated with current approaches.
View Article and Find Full Text PDFSystemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource.
View Article and Find Full Text PDFThe identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks.
View Article and Find Full Text PDFSummary: iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of target proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally, compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the similarity of structural properties of compounds and in the context of compounds' cognate targets. Similar compounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins.
View Article and Find Full Text PDFBackground: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.
Results: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes.
Automated protein function prediction is critical for the annotation of uncharacterized protein sequences, where accurate prediction methods are still required. Recently, deep learning based methods have outperformed conventional algorithms in computer vision and natural language processing due to the prevention of overfitting and efficient training. Here, we propose DEEPred, a hierarchical stack of multi-task feed-forward deep neural networks, as a solution to Gene Ontology (GO) based protein function prediction.
View Article and Find Full Text PDFBackground: The automated prediction of the enzymatic functions of uncharacterized proteins is a crucial topic in bioinformatics. Although several methods and tools have been proposed to classify enzymes, most of these studies are limited to specific functional classes and levels of the Enzyme Commission (EC) number hierarchy. Besides, most of the previous methods incorporated only a single input feature type, which limits the applicability to the wide functional space.
View Article and Find Full Text PDFThe identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e.
View Article and Find Full Text PDFAnalysing the relationships between biomolecules and the genetic diseases is a highly active area of research, where the aim is to identify the genes and their products that cause a particular disease due to functional changes originated from mutations. Biological ontologies are frequently employed in these studies, which provides researchers with extensive opportunities for knowledge discovery through computational data analysis. In this study, a novel approach is proposed for the identification of relationships between biomedical entities by automatically mapping phenotypic abnormality defining HPO terms with biomolecular function defining GO terms, where each association indicates the occurrence of the abnormality due to the loss of the biomolecular function expressed by the corresponding GO term.
View Article and Find Full Text PDFProtein-Protein Interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design.
View Article and Find Full Text PDFMethods Mol Biol
January 2019
Proteins use their functional regions to exploit various activities, including binding to other proteins, nucleic acids, or drugs. Functional sites of the proteins have a tendency to be more conserved than the rest of the protein surface. Therefore, detection of the conserved residues using phylogenetic analysis is a general approach to predict functionally critical residues.
View Article and Find Full Text PDFRecent advances in computing power and machine learning empower functional annotation of protein sequences and their transcript variations. Here, we present an automated prediction system UniGOPred, for GO annotations and a database of GO term predictions for proteomes of several organisms in UniProt Knowledgebase (UniProtKB). UniGOPred provides function predictions for 514 molecular function (MF), 2909 biological process (BP), and 438 cellular component (CC) GO terms for each protein sequence.
View Article and Find Full Text PDF