Genome Res
May 2024
Estrogen Receptor 1 (ESR1; also known as ERα, encoded by gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications.
View Article and Find Full Text PDFBackground: Glioblastoma is the most common and aggressive primary brain tumor with extremely poor prognosis, highlighting an urgent need for developing novel treatment options. Identifying epigenetic vulnerabilities of cancer cells can provide excellent therapeutic intervention points for various types of cancers.
Method: In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers.
Estrogen Receptor alpha (ERα) is the main driver and prime drug target in luminal breast. ERα chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ERα chromatin action, along with its biological implications.
View Article and Find Full Text PDFCurcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity.
View Article and Find Full Text PDFInfertility affects 10-15% of couples, with half attributed to male factors. An improved understanding of the cell-type-specific dysfunction contributing to male infertility is needed to improve available therapies; however, human testicular tissues are difficult to obtain for research purposes. To overcome this, researchers have begun to use human induced pluripotent stem cells (hiPSCs) to generate various testis-specific cell types in vitro.
View Article and Find Full Text PDFThe vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity.
View Article and Find Full Text PDFAndrogen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored.
View Article and Find Full Text PDFMany genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease.
View Article and Find Full Text PDFDysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes.
View Article and Find Full Text PDFUnlabelled: In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs, and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multiomics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial.
View Article and Find Full Text PDFAndrogen receptor (AR)-mediated transcription is critical in almost all stages of prostate cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory proteins, chromatin remodeling complexes, and other transcription factors that work with AR at -regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during PCa progression.
View Article and Find Full Text PDFAndrogen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear.
View Article and Find Full Text PDFBackground: Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10-100× more binding sites than differentially expressed genes.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell-specific apoptosis, making it a prime therapeutic candidate. However, many tumor cells are either innately TRAIL-resistant, or they acquire resistance with adaptive mechanisms that remain poorly understood. In this study, we generated acquired TRAIL resistance models using multiple glioblastoma (GBM) cell lines to assess the molecular alterations in the TRAIL-resistant state.
View Article and Find Full Text PDFAndrogen receptor (AR) signalling is essential in nearly all prostate cancers. Any alterations to AR-mediated transcription can have a profound effect on carcinogenesis and tumor growth. While mutations of the AR protein have been extensively studied, little is known about those somatic mutations that occur at the non-coding regions where AR binds DNA.
View Article and Find Full Text PDFAndrogen deprivation therapy (ADT) is the standard care for prostate cancer (PCa) patients who fail surgery or radiotherapy. While initially effective, the cancer almost always recurs as a more aggressive castration resistant prostate cancer (CRPC). Previous studies have demonstrated that chromatin modifying enzymes can play a critical role in the conversion to CRPC.
View Article and Find Full Text PDFSilencing of the somatic cell type-specific genes is a critical yet poorly understood step in reprogramming. To uncover pathways that maintain cell identity, we performed a reprogramming screen using inhibitors of chromatin factors. Here, we identify acetyl-lysine competitive inhibitors targeting the bromodomains of coactivators CREB (cyclic-AMP response element binding protein) binding protein (CBP) and E1A binding protein of 300 kDa (EP300) as potent enhancers of reprogramming.
View Article and Find Full Text PDFChemical derivatives of levan from Halomonas smyrnensis AAD6(T) with low, medium and high levels of sulfation were synthesized and characterized by FTIR and 2D-NMR. Sulfated levan samples were found to exhibit anticoagulation activity via the intrinsic pathway like heparin in a dose-dependent manner. Exceptionally high heparin equivalent activity of levan sulfate was shown to proceed via thrombin inhibition where decreased Factor Xa activity with increasing concentration was observed in antithrombin tests and above a certain concentration, levan sulfate showed a better inhibitor activity than heparin.
View Article and Find Full Text PDF