Publications by authors named "Tun-Hou Lee"

Sub-Saharan Africans infected with HIV-1C make up the largest AIDS patient population in the world and exhibit large heterogeneity in disease progression before initiating antiretroviral therapy. To identify host variants associated with HIV disease progression, we performed genome-wide association studies on a total of 556 treatment-naive HIV-infected individuals in Botswana. We characterized the pattern of HIV disease progression using a novel functional principal component analysis, which can better capture longitudinal CD4 and viral load (VL) trajectories.

View Article and Find Full Text PDF

Single-dose nevirapine (NVP) is quite effective in preventing transmission of the human immunodeficiency virus (HIV) from mother to child; however, many women develop resistance to NVP in this setting. Comparing outcomes of clinical studies reveals an increased amount of resistance in subtype C relative to that in other subtypes. This study investigates how nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutations of subtype C affect replication capacity.

View Article and Find Full Text PDF

Human immunodeficiency virus 1 subtype D (HIV-1D) contributes to a significant portion of the HIV-1 disease burden in eastern and central Africa, and is associated with more rapid disease progression. Its viral envelope sequences, particularly in the third variable region (V3), are highly divergent from other major subtypes yet have rarely been studied to date. We evaluated the V3 and select bridging sheet residues of the HIV-1D 94UG114 envelope by alanine-scanning mutagenesis to determine the residues involved in CCR5 usage conservation in the face of sequence variability.

View Article and Find Full Text PDF

In order to understand the impact of zidovudine resistance and thymidine analog mutations (TAMs) on subtype C human immunodeficiency virus type 1, we created mutants in subtype C reverse transcriptase (RT). The subtype B RT was placed in a subtype C backbone to act as a control. Mutants and wild-type (WT) virus were competed in a head-to-head competition assay to determine how different clones grew in the same culture.

View Article and Find Full Text PDF

South Africa is one of the countries most severely affected by HIV/AIDS. At the peak of the epidemic, the government, going against consensus scientific opinion, argued that HIV was not the cause of AIDS and that antiretroviral (ARV) drugs were not useful for patients and declined to accept freely donated nevirapine and grants from the Global Fund. Using modeling, we compared the number of persons who received ARVs for treatment and prevention of mother-to-child HIV transmission between 2000 and 2005 with an alternative of what was reasonably feasible in the country during that period.

View Article and Find Full Text PDF

ADARs (adenosine deaminases that act on double-stranded RNA) are RNA editing enzymes that catalyze a change from adenosine to inosine, which is then recognized as guanosine by translational machinery. We demonstrate here that overexpression of ADARs but not of an ADAR mutant lacking editing activity could upregulate human immunodeficiency virus type 1 (HIV-1) structural protein expression and viral production. Knockdown of ADAR1 by RNA silencing inhibited HIV-1 production.

View Article and Find Full Text PDF

Antiretroviral drugs (ARVs) have been shown to be efficacious in decreasing mother-to-child transmission (MTCT) of HIV. A summary estimate of the efficacy of ARVs in reducing MTCT is important for modeling and policy decisions. However, no one has hitherto attempted to generate this summary estimate for Africa, the continent with the greatest HIV/AIDS burden.

View Article and Find Full Text PDF

A major difference between binding and fusion assays commonly used to study the human immunodeficiency virus (HIV) envelope is the use of monomeric envelope for the former assay and oligomeric envelope for the latter. Due to discrepancies in their readouts for some mutants, envelope regions involved in CCR5 coreceptor usage were systematically studied to determine whether the discordance is due to inherent differences between the two assays or whether it genuinely reflects functional differences at each entry step. By adding the binding inhibitor TAK-779 to delay coreceptor binding kinetics in the fusion assay, the readouts were found comparable between the assays for the mutants analysed in this study.

View Article and Find Full Text PDF

The current model for HIV-1 envelope-coreceptor interaction depicts the V3 stem and bridging sheet binding to the CCR5 N-terminus while the V3 crown interacts with the second extracellular loop, which is the coreceptor domain that appears to be relatively more important for fusion and infection. Our prediction based on this model is that mutations in the V3 crown might consequently have more effects on cell-cell fusion and virus entry than mutations introduced in the V3 stem and C4 region. We performed alanine-scanning of the V3 loop and selected C4 residues in the JRFL envelope and tested the capacity of the resulting mutants for CCR5 binding, cell-cell fusion, and virus infection.

View Article and Find Full Text PDF

Context: Postnatal transmission of human immunodeficiency virus-1 (HIV) via breastfeeding reverses gains achieved by perinatal antiretroviral interventions.

Objective: To compare the efficacy and safety of 2 infant feeding strategies for the prevention of postnatal mother-to-child HIV transmission.

Design, Setting, And Patients: A 2 x 2 factorial randomized clinical trial with peripartum (single-dose nevirapine vs placebo) and postpartum infant feeding (formula vs breastfeeding with infant zidovudine prophylaxis) interventions.

View Article and Find Full Text PDF

A number of HIV-1 vaccines are in various phases of clinical trials and many more are in the developmental pipeline. Vaccines are especially needed for developing countries where morbidity and mortality due to HIV/AIDS is most severe, the prevalence of HIV infection is highest, and its incidence is often still rising dramatically. Individuals living in these regions are often infected with one or more helminth parasites which systemically bias the immune system towards Th2-type as well as drive immune anergy.

View Article and Find Full Text PDF

We investigated the interactive relationship between proviral DNA load and virus-specific IFN-gamma-secreting T cell responses in HIV-1C infection. The presence or absence of correlation, and inverse or direct type of correlation, if any, were dependent on targeted viral gene product. Responses to Gag p24 or to Pol were associated with lower proviral DNA load.

View Article and Find Full Text PDF

A complex mRNA splicing pattern, which remains to be fully characterized, influences HIV-1 gene expression. In this study, poor envelope expression of a primary HIV-1 isolate was observed and linked to increased splicing of the two coding exons of tat/rev. The substitution of a nucleotide G, located 28 nucleotides upstream of the splice acceptor site SA7 in the recently identified intron splicing silencer sequence, was found to be responsible for the poor envelope expression.

View Article and Find Full Text PDF

HIV-1 has maximized its utilization of syndecans. It uses them as in cis receptors to infect macrophages and as in trans receptors to infect T-lymphocytes. In this study, we investigated at a molecular level the mechanisms that control HIV-1-syndecan interactions.

View Article and Find Full Text PDF

In order to export intron-containing RNA from nucleus, retroviruses use either viral trans-acting factors or constitutive cellular factors interacting with cis-elements in their intron-containing RNA. We have previously identified a Cis Enhancing Sequence (CES) in HIV-1 env region that could co-operate with Rev and RRE to enhance Gag expression by promoting RNA stabilization and exportation. In this study, we found that CES could function in a Rev-independent manner by co-operating with a Constitutive Transport Element (CTE) of Mason-Pfizer monkey viruses (MPMV).

View Article and Find Full Text PDF

Maternal plasma human immunodeficiency virus (HIV) type 1 RNA load has a role in perinatal transmission, but significant overlap in the range of plasma virus loads among transmitters and nontransmitters is often observed, which makes it difficult to predict transmission outcome. We measured several virus markers in a drug-naive population of HIV-1-infected mothers in Botswana. Maternal plasma HIV-1 RNA load, peripheral blood mononuclear cell-associated blood HIV-1 DNA load, and cervicovaginal fluid (CVF) HIV-1 DNA load were determined using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Expression of HIV-1 genes is regulated at multiple levels including the complex RNA splicing and transport mechanisms. Multiple cis-acting elements involved in these regulations have been previously identified in various regions of HIV-1 genome. Here we show that another cis-acting element was present in HIV-1 env region.

View Article and Find Full Text PDF

The V3 loop and the bridging sheet domain of human immunodeficiency virus type 1 (HIV-1) subtype B envelope glycoprotein gp120 have been implicated in CCR5 coreceptor utilization. In this study, mutant envelope glycoproteins of a subtype C isolate containing substitutions in the V3 or C4 region were generated to determine which are required for efficient CCR5-dependent cell fusion and viral entry. We found that the V3 crown and C4 residues are relatively dispensable for cell-cell fusion, although some residues may be involved in the regulation of early postentry steps in viral replication.

View Article and Find Full Text PDF