Posterior segment ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vein occlusion, are leading causes of vision impairment and blindness worldwide. Effective management of these conditions remains a formidable challenge due to the unique anatomical and physiological barriers of the eye, including the blood-retinal barrier and rapid drug clearance mechanisms. To address these hurdles, nanostructured drug delivery systems are proposed to overcome ocular barriers, target the retina, and enhance permeation while ensuring controlled release.
View Article and Find Full Text PDFAtopic dermatitis is a prevalent chronic skin inflammation affecting 2.1 to 4.1% of adults globally.
View Article and Find Full Text PDFIntegration host factor (IHF), a nucleoid-associated protein in bacterial cells, is implicated in a number of chromosomal functions including DNA compaction. IHF binds to all duplex DNA with micromolar affinity and at sequence-specific sites with much higher affinity. IHF is known to induce sharp bends in the helical axis of DNA in both modes of binding, but the role of IHF in controlling DNA condensation within bacterial cells has remained undetermined.
View Article and Find Full Text PDFControlling the size and shape of DNA condensates is important in vivo and for the improvement of nonviral gene delivery. Here, we demonstrate that the morphology of DNA condensates, formed under a variety of conditions, is shifted completely from toroids to rods if the bacterial protein HU is present during condensation. HU is a non-sequence-specific DNA binding protein that sharply bends DNA, but alone does not condense DNA into densely packed particles.
View Article and Find Full Text PDFIt is well known that multivalent cations cause free DNA in solution to condense into nanometer-scale particles with toroidal and rod-like morphologies. However, it has not been shown to what degree kinetic factors (e.g.
View Article and Find Full Text PDFThe condensation of nucleic acids into well-defined particles is an integral part of several approaches to artificial cellular delivery. Improvements in the efficiency of nucleic acid delivery in vivo are important for the development of DNA- and RNA-based therapeutics. Presently, most efforts to improve the condensation and delivery of nucleic acids have focused on the synthesis of novel condensing agents.
View Article and Find Full Text PDF