Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, superresolution approaches (grazing incidence structured illumination, GI-SIM, and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in . In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane.
View Article and Find Full Text PDFThe disconnect between preclinical and clinical results underscores the imperative for establishing good animal models, then gleaning all available data on efficacy, safety, and potential toxicities associated with a device or drug. Mini pigs are a commonly used animal model for testing orthopedic and dental devices because their skeletons are large enough to accommodate human-sized implants. The challenge comes with the analyses of their hard tissues: current methods are time-consuming, destructive, and largely limited to histological observations made from the analysis of very few tissue sections.
View Article and Find Full Text PDFIntroduction: Few interspecies comparisons of alveolar bone have been documented, and this knowledge gap raises questions about which animal models most accurately represent human dental conditions or responses to surgical interventions.
Objectives: The objective of this study was to employ state-of-the-art quantitative metrics to directly assess and compare the structural and functional characteristics of alveolar bone among humans, mini pigs, rats, and mice.
Methods: The same anatomic location (i.
: The aim of this study was to explore whether dentinogenesis imperfecta (DGI)-related aberrations are detectable in odontogenic tissues. : Morphological and histological analyses were carried out on 3 teeth (two maxillary 1 molars, one maxillary central incisor) extracted from a patient with DGI Type II. A maxillary 2 molar teeth extracted from a healthy patient was used as control.
View Article and Find Full Text PDFRotator cuff (RTC) repair outcomes are unsatisfactory due to the poor healing capacity of the tendon bone interface (TBI). In our preceding study, tendon hydrogel (tHG), which is a type I collagen rich gel derived from human tendons, improved biomechanical properties of the TBI in a rat chronic RTC injury model. Here we investigated whether adipose-derived stem cell (ASC)-seeded tHG injection at the repair site would further improve RTC healing.
View Article and Find Full Text PDFThe preservation of bone viability at an osteotomy site is a critical variable for subsequent implant osseointegration. Recent biomechanical studies evaluating the consequences of site preparation led us to rethink the design of bone-cutting drills, especially those intended for implant site preparation. We present here a novel drill design that is designed to efficiently cut bone at a very low rotational velocity, obviating the need for irrigation as a coolant.
View Article and Find Full Text PDFOsteoporosis is associated with decreased bone density and increased bone fragility, but how this disease affects alveolar bone healing is not clear. The objective of this study was to determine the extent to which osteoporosis affects the jaw skeleton and then to evaluate possible mechanisms whereby an osteoporotic phenotype might affect the rate of alveolar bone healing following tooth extraction. Using an ovariectomized mouse model coupled with micro-computed tomographic imaging, histologic, molecular, and cellular assays, we first demonstrated that the appendicular and jaw skeletons both develop osteoporotic phenotypes.
View Article and Find Full Text PDFIn eukaryotic cells, organelles and the cytoskeleton undergo highly dynamic yet organized interactions capable of orchestrating complex cellular functions. Visualizing these interactions requires noninvasive, long-duration imaging of the intracellular environment at high spatiotemporal resolution and low background. To achieve these normally opposing goals, we developed grazing incidence structured illumination microscopy (GI-SIM) that is capable of imaging dynamic events near the basal cell cortex at 97-nm resolution and 266 frames/s over thousands of time points.
View Article and Find Full Text PDFThe aim of this study was to gain insights into the biology and mechanics of immediate postextraction implant osseointegration. To mimic clinical practice, murine first molar extraction was followed by osteotomy site preparation, specifically in the palatal root socket. The osteotomy was positioned such that it removed periodontal ligament (PDL) only on the palatal aspect of the socket, leaving the buccal aspect undisturbed.
View Article and Find Full Text PDFThe objective of our experiments was to identify new therapeutic strategies to stimulate dentin formation in an adult tooth. To address this objective, we evaluated dentin production in 2 acute trauma models: one involving a pulp exposure and the other involving a superficial dentin injury. Molecular, cellular, and histologic analyses revealed that in response to a severe injury, where the pulp is exposed to the oral cavity, cell death is rampant and the repair response initiates from surviving pulp cells and, to a lesser extent, surviving odontoblasts.
View Article and Find Full Text PDFStem cells residing in the periodontal ligament (PDL) support the homeostasis of the periodontium, but their in vivo identity, source(s), and function(s) remain poorly understood. Here, using a lineage-tracing mouse strain, we identified a quiescent Wnt-responsive population in the PDL that became activated in response to tooth extraction. The Wnt-responsive population expanded by proliferation, then migrated from the PDL remnants that remained attached to bundle bone, into the socket.
View Article and Find Full Text PDFOur long-term objective is to devise methods to improve osteotomy site preparation and, in doing so, facilitate implant osseointegration. As a first step in this process, we developed a standardized oral osteotomy model in ovariectomized rats. There were 2 unique features to this model: first, the rats exhibited an osteopenic phenotype, reminiscent of the bone health that has been reported for the average dental implant patient population.
View Article and Find Full Text PDFBone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes.
View Article and Find Full Text PDFAlthough fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster.
View Article and Find Full Text PDFDrosophila's dorsal closure provides an excellent model system with which to analyze biomechanical processes during morphogenesis. During native closure, the amnioserosa, flanked by two lateral epidermal sheets, forms an eye-shaped opening with canthi at each corner. The dynamics of amnioserosa cells and actomyosin purse strings in the leading edges of epidermal cells promote closure, whereas the bulk of the lateral epidermis opposes closure.
View Article and Find Full Text PDFApical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila.
View Article and Find Full Text PDFDirect observations of live cells expressing fluorescently tagged tubulin have led to important advances in our understanding of mitosis. A limitation of this approach is that all of the cells' microtubules are fluorescent and thus observation of the behavior of specific subsets of microtubules is precluded. To address this problem, we have tagged tubulin with a photoactivatable variant of green fluorescent protein (PA-GFP), thereby allowing one to follow the behavior of a subset of tagged molecules in the cell.
View Article and Find Full Text PDFTPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle.
View Article and Find Full Text PDFDorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure.
View Article and Find Full Text PDFDuring mitosis, the motor molecule cytoplasmic dynein plays key direct and indirect roles in organizing microtubules (MTs) into a functional spindle. At this time, dynein is also recruited to kinetochores, but its role or roles at these organelles remain vague, partly because inhibiting dynein globally disrupts spindle assembly [1-4]. However, dynein can be selectively depleted from kinetochores by disruption of ZW10 [5], and recent studies with this approach conclude that kinetochore-associated dynein (KD) functions to silence the spindle-assembly checkpoint (SAC) [6].
View Article and Find Full Text PDFIn centrosome-containing cells, microtubules nucleated at centrosomes are thought to play a major role in spindle assembly. In addition, microtubule formation at kinetochores has also been observed, most recently under physiological conditions in live cells. The relative contributions of microtubule formation at kinetochores and centrosomes to spindle assembly, and their molecular requirements, remain incompletely understood.
View Article and Find Full Text PDFMammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nucleation, do not show directional bias, but are equivalent toward and away from the wound.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2004
Understanding how cells regulate microtubule nucleation during the cell cycle has been limited by the inability to directly observe nucleation from the centrosome. To view nucleation in living cells, we imaged GFP-tagged EB1, a microtubule tip-binding protein, and determined rates of nucleation by counting the number of EB1-GFP comets emerging from the centrosome over time. Nucleation rate increased 4-fold between G(2) and prophase and continued to rise through anaphase and telophase, reaching a maximum of 7 times interphase rates.
View Article and Find Full Text PDF