A relevant problem in dynamics is to characterize how deterministic systems may exhibit features typically associated with stochastic processes. A widely studied example is the study of (normal or anomalous) transport properties for deterministic systems on non-compact phase space. We consider here two examples of area-preserving maps: the Chirikov-Taylor standard map and the Casati-Prosen triangle map, and we investigate transport properties, records statistics, and occupation time statistics.
View Article and Find Full Text PDFSeveral dynamical systems in nature can be maintained out-of-equilibrium, either through mutual interaction of particles or by external fields. The particle's transport and the transient dynamics are landmarking of such systems. While single ratchet systems are genuine candidates to describe unbiased transport, we demonstrate here that coupled ratchets exhibit collective transient ratchet transport.
View Article and Find Full Text PDF