Background: Controlled trials have consistently demonstrated the efficacy of poly(ADP-ribose) polymerase inhibitors (PARPis) in patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA1 or BRCA2 alterations (BRCAalt). However, the reported efficacy of PARPi for alterations in other homologous recombination repair (HRR) genes is less consistent. We sought to evaluate the routine practice effectiveness of PARPi between and within these groups.
View Article and Find Full Text PDFBackground: The treatment landscape for HR(+)HER2(-) metastatic breast cancer (MBC) is evolving for patients with ESR1 mutations (mut) and PI3K/AKT pathway genomic alterations (GA). We sought to inform clinical utility for comprehensive genomic profiling (CGP) using tissue (TBx) and liquid biopsies (LBx) in HR(+)HER2(-) MBC.
Methods: Records from a de-identified breast cancer clinicogenomic database for patients who underwent TBx/LBx testing at Foundation Medicine during routine clinical care at ~ 280 US cancer clinics between 01/2011 and 09/2023 were assessed.
Purpose: Biallelic germline pathogenic variants of the base excision repair (BER) pathway gene predispose to colorectal cancer (CRC) and other cancers. The possible association of heterozygous variants with broader cancer susceptibility remains uncertain. This study investigated the prevalence and consequences of pathogenic variants and loss of heterozygosity (LOH) in a large pan-cancer analysis.
View Article and Find Full Text PDFBackground: Pulmonary large-cell neuroendocrine carcinoma (LCNEC) is an uncommon subtype of lung cancer believed to represent a spectrum of tumors sharing characteristics of both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Other groups have proposed genomic LCNEC subtypes, including small cell-like, non-small cell-like, and carcinoid-like subtypes. The primary goal of this study was to better define the NSCLC-like subtype with comprehensive genomic profiling (CGP).
View Article and Find Full Text PDFPurpose: Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types.
Experimental Design: LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes.
Background: An accumulation of somatic mutations in tumors leads to increased neoantigen levels and antitumor immune response. Tumor mutational burden (TMB) reflects the rate of somatic mutations in the tumor genome, as determined from tumor tissue (tTMB) or blood (bTMB). While high tTMB is a biomarker of immune checkpoint inhibitor (ICI) treatment efficacy, few studies have explored the clinical utility of bTMB, a less invasive alternative for TMB assessment.
View Article and Find Full Text PDFBackground: MYC is a commonly amplified, potentially targetable gene in prostate cancer (PCa). We sought to define the molecular, immunologic, and clinicodemographic landscape of MYC amplification (MYC) in advanced PCa to establish a rationale for personalized treatment combinations.
Methods: Hybrid capture-based comprehensive genomic profiling (CGP) was performed on PCa tumor samples.
Existing guidance regarding clinically informed germline testing for patients with cancer is effective for evaluation of classic hereditary cancer syndromes and established gene/cancer type associations. However, current screening methods may miss patients with rare, reduced penetrance, or otherwise occult hereditary risk. Secondary finding of suspected germline variants that may confer inherited cancer risk via tumor comprehensive genomic profiling (CGP) has the potential to help address these limitations.
View Article and Find Full Text PDFPurpose: Alterations in BRAF have been reported in 3% to 5% of prostate cancer, although further characterization is lacking. Here, we describe the nature of BRAF alterations in prostate cancer using a large cohort from commercially available tissue and liquid biopsies subjected to comprehensive genomic profiling (CGP).
Experimental Design: Tissue and liquid biopsies from patients with prostate cancer were profiled using FoundationOne CDx and FoundationOne Liquid CDx CGP assays, respectively.
Pathological and genomic profiling have transformed breast cancer care by matching patients to targeted treatments. However, tumors evolve and evade therapeutic interventions often through the acquisition of genomic mutations. Here we examine patients profiled with tissue (TBx) and liquid biopsy (LBx) as part of routine clinical care, to characterize the tumor evolutionary landscape and identify potential vulnerabilities in the relapsed setting.
View Article and Find Full Text PDFPurpose: Alpelisib is a PI3K alpha (PI3Kα)-selective inhibitor approved for the treatment of hormone receptor-positive/HER2-negative (HR+/HER2-) PIK3CA-mutated advanced breast cancer (ABC) based on the SOLAR-1 trial, which defined 11 substitutions in exons 7, 9, and 20 in PIK3CA (SOLAR1m). We report alpelisib effectiveness for ABC harboring SOLAR1m, as well as other pathogenic PIK3CA mutations (OTHERm) using comprehensive genomic profiling (CGP).
Experimental Design: A total of 33,977 tissue and 1,587 liquid biopsies were analyzed using hybrid capture-based CGP covering the entire coding sequence of PIK3CA.
NNMT uses SAM as a cofactor to catalyze the methylation of nicotinamide, producing 1-methylnicotinamide. Recent studies have shown that NNMT upregulation in cancer-associated fibroblasts (CAFs) is required to maintain the CAF phenotype in high-grade serous carcinoma. These observations suggest that NNMT should be evaluated as a therapeutic target, especially in cancer.
View Article and Find Full Text PDFPurpose: Profiling of circulating tumor DNA (ctDNA) is increasingly adopted in the management of solid tumors, concurrent with increased availability of more comprehensive ctDNA panels. However, variable ctDNA shed can result in variable assay sensitivity. We studied the relationship between ctDNA tumor fraction (TF) and detection of actionable alterations across cancer types.
View Article and Find Full Text PDFPurpose: Intensification of androgen deprivation therapy (ADT) with either docetaxel or androgen receptor axis-targeted therapies (ARAT) are the current standard of care for patients with metastatic castration-sensitive prostate cancer (mCSPC). However, biomarkers guiding treatment selection are lacking. We hypothesized that ADT intensification with ARAT, but not with docetaxel, would be associated with improved outcomes in patients with de novo (dn)-mCSPC harboring SPOP mutations.
View Article and Find Full Text PDFIntroduction: Germline mutations are rare and have not been associated with increased risk of NSCLC.
Methods: We identified two sequential primary NSCLCs harboring distinct actionable driver alterations (EGFR E746 _S752 delinsV and ) in a patient with NSCLC with a novel germline mutation S5fs∗54 (c.14_20delCGGATGT).
Activation of the tyrosine kinase receptor IGF1R is targetable with existing tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, but mutations in IGF1R have not been systematically characterized. Pan-cancer analysis of 326,911 tumors identified two distinct, activating non-frameshift insertion hotspots in IGF1R, which were significantly enriched in adenoid cystic carcinomas (ACCs). IGF1R alterations from 326,911 subjects were analyzed by variant effect prediction class, position within the gene, and cancer type.
View Article and Find Full Text PDFBackground: Liquid biopsy is a powerful tool that can enable treatment decisions for metastatic prostate cancer patients with difficult-to-biopsy tumors. However, the detection of genomic alterations via liquid biopsy is limited by the fraction (tumor fraction [TF]) of circulating tumor DNA (ctDNA) within the total cell-free DNA content. While prior work has preliminarily correlated TF with clinical features of prostate cancer, we sought to validate and provide additional resolution, such that a clinical practitioner might anticipate the probability of successful liquid biopsy profiling leveraging commonly assessed clinical and laboratory features.
View Article and Find Full Text PDFBackground: Biomarkers predicting second-generation novel hormonal therapy (NHT) benefit relative to taxanes are critical for optimized treatment decisions for metastatic castration-resistant prostate cancer (mCRPC) patients. These associations have not been reported simultaneously for common mCRPC genomic biomarkers.
Objective: To evaluate predictive associations of common genomic aberrations in mCRPC using an established comprehensive genomic profiling (CGP) system.
Background: This study assessed the contrasting genomic profiles from the primary tumors (PTs), metastatic (MET) sites, and circulating tumor DNA (ctDNA) of patients with prostate cancer (PC).
Methods: A total of 1294 PC tissue specimens and 2462 ctDNA specimens underwent hybrid capture-based comprehensive genomic profiling (CGP). Specimens included tissue from PTs; MET biopsies from bone, liver (LIV), lung (LU), brain (BN), lymph node, and soft tissue sites; and ctDNA.
Parenchymal brain metastases from prostate cancer are unusual and are associated with poor prognosis. Given the rarity of this entity, little is known about its molecular and histologic characteristics. Here we describe a patient with metastatic castration-resistant, mismatch repair-deficient (dMMR) prostate cancer with parenchymal brain metastases.
View Article and Find Full Text PDFImportance: DNA damage repair (DDR) gene mutations represent actionable alterations that can guide precision medicine strategies for advanced prostate cancer. However, acquisition of contemporary tissue samples for molecular testing can be a barrier to deploying precision medicine approaches. We hypothesized that most DDR alterations represent truncal events in prostate cancer and that primary tissue would faithfully reflect mutations found in cell-free circulating tumor DNA (ctDNA) and/or metastatic tissue.
View Article and Find Full Text PDFBackground: At diagnosis, the majority of patients with intrahepatic cholangiocarcinoma (IHCC) present with advanced disease and a poor prognosis. Comprehensive genomic profiling (CGP) early in the disease course may increase access to targeted therapies and clinical trials; however, unresolved issues remain surrounding the optimal biopsy type to submit for CGP.
Patients And Methods: Mutational frequencies between primary tumor biopsies (Pbx), metastatic biopsies (Mbx), and liquid biopsies (Lbx) in 1,632 patients with IHCC were compared.
Purpose: Comprehensive genomic profiling (CGP) is of increasing value for patients with metastatic castration-resistant prostate cancer (mCRPC). mCRPC tends to metastasize to bone, making tissue biopsies challenging to obtain. We hypothesized CGP of cell-free circulating tumor DNA (ctDNA) could offer a minimally invasive alternative to detect targetable genomic alterations (GA) that inform clinical care.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2016
The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction.
View Article and Find Full Text PDF