Background: Working memory (WM) deficits are among the most prominent cognitive impairments in attention deficit hyperactivity disorder (ADHD). While functional connectivity is a prevailing approach in brain imaging of ADHD, alterations in WM-related functional brain networks and their malleability by cognitive training are not well known. We examined whole-brain functional connectivity differences between adults with and without ADHD during n-back WM tasks and rest at pretest, as well as the effects of WM training on functional and structural brain connectivity in the ADHD group.
View Article and Find Full Text PDFCurrent knowledge of white matter changes in large-scale brain networks in adult attention-deficit/hyperactivity disorder (ADHD) is scarce. We collected diffusion-weighted magnetic resonance imaging data in 40 adults with ADHD and 36 neurotypical controls and used constrained spherical deconvolution-based tractography to reconstruct whole-brain structural connectivity networks. We used network-based statistic (NBS) and graph theoretical analysis to investigate differences in these networks between the ADHD and control groups, as well as associations between structural connectivity and ADHD symptoms assessed with the Adult ADHD Self-Report Scale or performance in the Conners Continuous Performance Test 2 (CPT-2).
View Article and Find Full Text PDFExposure to early life stress (ELS) is associated with a variety of detrimental psychological and neurodevelopmental effects. Importantly, ELS has been associated with regional alterations and aberrant connectivity in the structure and functioning of brain regions involved in emotion processing and self-regulation, creating vulnerability to mental health problems. However, longitudinal research regarding the impact of ELS on functional connectivity between brain regions in the default mode network (DMN) and fronto-limbic network (FLN), both implicated in emotion-related processes, is relatively scarce.
View Article and Find Full Text PDF