Publications by authors named "Tuhina Adit Maark"

Correction for 'Elastic strain effects on catalysis of a PdCuSi metallic glass thin film' by Yiyi Yang et al., Phys. Chem.

View Article and Find Full Text PDF

Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way.

View Article and Find Full Text PDF

Highly organized crossed bilayer assemblies of nanowires (NWs) are made using directed hydrogen bonding between the protecting ligand shells of atomically precise cluster molecules anchored on NWs. Layers of quantum clusters remain sandwiched between two neighboring NWs at a defined distance, dictated by the core-size of the cluster, while the orientation of the ligands in space dictates the interlayer geometry.

View Article and Find Full Text PDF

A thorough study of the structural, electronic, and hydrogen-desorption properties of β- and γ-MgH2 phases substituted by selected transition metals (TMs) is performed through first-principles calculations based on density functional theory (DFT). The TMs considered herein include Sc, V, Fe, Co, Ni, Cu, Y, Zr, and Nb, which substitute for Mg at a doping concentration of 3.125 % in both the hydrides.

View Article and Find Full Text PDF

The influence of strain on catalytic activity has previously been examined directly by calculations and indirectly by experiments. The origin of the phenomenon has been attributed to strain-induced changes in the catalyst electronic structure. By employing a Pd-based metallic glass film capable of large elastic strains, we provide direct experimental evidence for catalytic activity being differently influenced by mechanically applied uniaxial tensile and compressive strains.

View Article and Find Full Text PDF