In the present study, ultra-small, magnetic, oleyl amine-coated FeO nanoparticles were synthesized and stabilized with a cationic ligand, cetyltrimethylammonium bromide, and an anticancer drug, methotrexate, was incorporated into a micelle-like nanoparticle structure for glioblastoma treatment. Nanoparticles were further characterized for their physicochemical properties using spectroscopic methods. Drug incorporation efficiency, drug loading, and drug release profile of the nanoparticles were investigated.
View Article and Find Full Text PDFSelf-assembling ferritin protein cages have been used as a template for magnetic iron oxide nanoparticle synthesis within its 8 nm cavity to be explored as a potential magnetic resonance imaging contrast agent. Here in, magnetic nanocores with various iron content were successfully synthesized using recombinant human H-chain ferritin (HFn) by a controlled mineralization reaction. r1 and r2 relaxivities of the synthesized magnetoferritin nanoparticles were measured and the effect of iron loading factor on the r1 and r2 relaxivity was investigated by using a quite large range of 10 different iron loadings per protein cage (500-5000) at 90 MHz and 300 MHz.
View Article and Find Full Text PDFDevelopment of biocompatible and multifunctional nanoprobes for tumor targeting, imaging, and therapy still remains a great challenge. Herein, gold nanoparticles (AuNPs) were synthesized in the cavity of horse spleen apoferritin protein (HoSAF) and protein surface was labeled with 2-amino-2-deoxy-glucose (2DG) as a cell surface glucose transport protein specific targeting probe to study the feasibility of its usage as a computer tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. 2DG conjugated and gold-loaded apoferritin (Au-HoSAF-2DG) nanoparticles (NPs) showed selective targeting for human breast adenocarcinoma (MCF-7) cells when compared to normal breast (MCF-10A) cells.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
October 2018
Re-magnetoferritin nanoparticles (NPs) provide an attractive platform for localized radiation therapy due to their magnetic targeting capability while enhancing contrast in magnetic resonans imaging (MRI) signals. In this study, cellular uptake, in vitro cytotoxicity, apoptotic potential of a non-radioactive isotope of rhenium in the form of Re-magnetoferritin NPs were evaluated in both human normal mammary epithelial and breast metastatic adenocarcinoma cell lines. The results showed that, NP administration into the cells is through receptor mediated endocytosis and cancer cells displayed significantly higher uptake and cytotoxicity compared to normal cells.
View Article and Find Full Text PDFIn this study, 2-amino-2-deoxy-glucose (2DG) was conjugated to COOH modified cobalt ferrite magnetic nanoparticles (COOH-MNPs), which were designed to target tumor cells as a potential targetable drug/gene delivery agent for cancer treatment. According to our results, it is apparent that, 2DG labeled MNPs were internalized more efficiently than COOH-MNPs under the same conditions in all cell types (MDA-MB-231 and MCF-7 cancer and MCF-10A normal breast cells) (p<0.001).
View Article and Find Full Text PDF