Publications by authors named "Tugba Ertan"

A new series of 5(or 6)-nitro/amino-2-(substituted phenyl/benzyl)benzoxazole derivatives were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Candida albicans and their drug-resistant isolate. Microbiological results indicated that the synthesized compounds possessed a broad spectrum of activity against the tested microorganisms at MIC values between > 400 and 12.5 microg/ml.

View Article and Find Full Text PDF

Some novel fused heterocyclic compounds of 2, 5-disubstituted-benzoxazole and benzimidazole derivatives, which were previously synthesized by our group, were investigated for their inhibitory activity on both eukaryotic DNA topoisomerase I and II in a cell free system. 2-Phenoxymethylbenzimidazole (17), 5-amino-2-(p-fluorophenyl)benzoxazole (3), 5-amino-2-(p-bromophenyl)benzoxazole (5), 5-nitro-2-phenoxymethyl-benzimidazole (18), 2-(p-chlorobenzyl)benzoxazole (10) and 5-amino-2-phenylbenzoxazole (2) were found to be more potent as eukaryotic DNA topoisomerase I poisons than the reference drug camptothecin having IC(50) values of 14.1, 132.

View Article and Find Full Text PDF

5-Nitro-2-(p-fluorophenyl)benzoxazole was prepared by heating 2-hydroxy-5-nitro aniline with p-fluorobenzoic acid in polyphosphoric acid. The FT-IR spectrum is recorded and analysed. The vibrational frequencies and corresponding vibrational assignments are examined theoretically using the Gaussian03 set of quantum chemistry codes.

View Article and Find Full Text PDF

A new series of N-(2-hydroxy-4(or 5)-nitro/aminophenyl)benzamide and phenylacetamide derivatives (1a-1n, 2a-2n) were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and their drug-resistant isolate. Microbiological results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms at MIC values between 500 and 1.95 microg/ml.

View Article and Find Full Text PDF