Publications by authors named "Tufan K Mukhopadhyay"

Activation of the oxysterol-sensing transcription factor liver X receptor (LXR) has been studied as a therapeutic strategy in metabolic diseases and cancer but is compromised by the side effects of LXR agonists. Local LXR activation in cancer treatment may offer an opportunity to overcome this issue suggesting potential uses of photopharmacology. We report the computer-aided development of photoswitchable LXR agonists based on the T0901317 scaffold, which is a known LXR agonist.

View Article and Find Full Text PDF

Glycerophospholipids are major components of cellular membranes and provide important signaling molecules. Besides shaping membrane properties, some bind to specific receptors to activate biological pathways. Untangling the roles of individual glycerophospholipids requires clearly defined molecular species, a challenge that can be best addressed through chemical synthesis.

View Article and Find Full Text PDF

Many aspects of cell signaling are controlled by lipids. Several signaling lipids have been functionalized with an azobenzene photoswitch to control underlying signaling dynamics with light. Herein, we provide an overview of signaling photolipids developed to date focusing on their biological applications.

View Article and Find Full Text PDF

C-H arylation of arenes without the use of directing groups is a challenge, even for simple molecules, such as benzene. We describe spatial anion control as a concept for the design of catalytic sites for C-H bond activation, thereby enabling nondirected C-H arylation of arenes at ambient temperature. The mild conditions enable late-stage structural diversification of biologically relevant small molecules, and site-selectivity complementary to that obtained with other methods of arene functionalization can be achieved.

View Article and Find Full Text PDF

The dimeric β-diketiminate manganese hydride compound, [(BDI)Mn(μ-H)], was prepared by treating [(BDI)Mn(μ-Cl)] with NaEtBH. This compound was characterized by single crystal X-ray diffraction and found to feature high-spin Mn centres that exhibit strong magnetic coupling by EPR spectroscopy. Once characterized, [(BDI)Mn(μ-H)] was found to mediate the hydrosilylation of a broad scope of alkenes at elevated temperature.

View Article and Find Full Text PDF

We report the preparation and electronic structure determination of chelate-reduced Mn(I) compounds that are relevant to electrocatalytic proton reduction mediated by [(PDI)Mn(CO)][Br]. Reducing [(PDI)Mn(CO)][Br] with excess Na-Hg afforded a neutral paramagnetic complex, (PDI)Mn(CO). This compound was found to feature a low spin Mn(I) center and a PDI radical anion as determined by magnetic susceptibility measurement (1.

View Article and Find Full Text PDF

We recently reported a bis(imino)pyridine (or pyridine diimine, PDI) manganese precatalyst, (PDI)Mn (1), that is active for the hydrosilylation of ketones and dihydrosilylation of esters. In this contribution, we reveal an expanded scope for 1-mediated hydrosilylation and propose two different mechanisms through which catalysis is achieved. Aldehyde hydrosilylation turnover frequencies (TOFs) of up to 4900 min have been realized, the highest reported for first row metal-catalyzed carbonyl hydrosilylation.

View Article and Find Full Text PDF

Heating (THF)2MnCl2 in the presence of the pyridine-substituted bis(imino)pyridine ligand, (PyEt)PDI, allowed preparation of the respective dihalide complex, ((PyEt)PDI)MnCl2. Reduction of this precursor using excess Na/Hg resulted in deprotonation of the chelate methyl groups to yield the bis(enamide)tris(pyridine)-supported product, (κ(5)-N,N,N,N,N-(PyEt)PDEA)Mn. This complex was characterized by single-crystal X-ray diffraction and found to possess an intermediate-spin (S = (3)/2) Mn(II) center by the Evans method and electron paramagnetic resonance spectroscopy.

View Article and Find Full Text PDF

Heating a 1:1 mixture of (CO)5MnBr and the phosphine-substituted pyridine diimine ligand, (Ph2PPr)PDI, in THF at 65 °C for 24 h afforded the diamagnetic complex [((Ph2PPr)PDI)Mn(CO)][Br] (1). Higher temperatures and longer reaction times resulted in bromide displacement of the remaining carbonyl ligand and the formation of paramagnetic ((Ph2PPr)PDI)MnBr (2). The molecular structure of 1 was determined by single crystal X-ray diffraction, and density functional theory (DFT) calculations indicate that this complex is best described as low-spin Mn(I) bound to a neutral (Ph2PPr)PDI chelating ligand.

View Article and Find Full Text PDF

The reduction of ((Ph2PPr)PDI)MnCl2 allowed the preparation of the formally zerovalent complex, ((Ph2PPr)PDI)Mn, which features a pentadentate bis(imino)pyridine chelate. This complex is a highly active precatalyst for the hydrosilylation of ketones, exhibiting TOFs of up to 76,800 h(-1) in the absence of solvent. Loadings as low as 0.

View Article and Find Full Text PDF

The reduction of Triphos [PhP(CH(2)CH(2)PPh(2))(2)] iron halide complexes has been explored, yielding formally zerovalent (κ(3)-Triphos)Fe(κ(2)-Triphos) and (κ(3)-Triphos)Fe(κ(2)-Bpy). Electrochemical analysis, coupled with the metrical parameters of (κ(3)-Triphos)Fe(κ(2)-Bpy), reveal an electronic structure consistent with a π-radical monoanion bipyridine chelate that is antiferromagnetically coupled to a low spin, Fe(I) metal center.

View Article and Find Full Text PDF