Publications by authors named "Tueckmantel W"

Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform.

View Article and Find Full Text PDF

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound ).

View Article and Find Full Text PDF

RAD51 is the central protein in homologous recombination (HR) repair, where it first binds ssDNA and then catalyzes strand invasion via a D-loop intermediate. Additionally, RAD51 plays a role in faithful DNA replication by protecting stalled replication forks; this requires RAD51 to bind DNA but may not require the strand invasion activity of RAD51. We previously described a small-molecule inhibitor of RAD51 named RI(dl)-2 (RAD51 inhibitor of D-loop formation #2, hereafter called 2 h), which inhibits D-loop activity while sparing ssDNA binding.

View Article and Find Full Text PDF

The design and synthesis of prostate specific membrane antigen (PSMA) ligands derived from 2-aminoadipic acid, a building block that has not previously been used to construct PSMA ligands, are reported. The effects of both the linker length and of an N-substituent of our PSMA ligands were probed, and X-ray structures of five of these ligands bound to PSMA were obtained. Among the ligands disclosed herein, showed the highest inhibitory activity for PSMA.

View Article and Find Full Text PDF

The histone deacetylases (HDACs) occur in 11 different isoforms, and these enzymes regulate the activity of a large number of proteins involved in cancer initiation and progression. The discovery of isoform-selective HDAC inhibitors (HDACIs) is desirable, as it is likely that such compounds would avoid some of the undesirable side effects found with the first-generation inhibitors. A series of HDACIs previously reported by us were found to display some selectivity for HDAC6 and to induce cell-cycle arrest and apoptosis in pancreatic cancer cells.

View Article and Find Full Text PDF

The interplay between dopamine and glutamate in the basal ganglia regulates critical aspects of motor learning and behavior. Metabotropic glutamate receptors (mGluR) are increasingly regarded as key modulators of neuroadaptation in these circuits, in normal and disease conditions. Using PET, we demonstrate a significant upregulation of mGluR type 5 in the striatum of MPTP-lesioned, parkinsonian primates, providing the basis for therapeutic exploration of mGluR5 antagonists in Parkinson disease.

View Article and Find Full Text PDF

The metabotropic glutamate receptor subtype 5 (mGluR5) has been reported to be implicated in various neurological disorders in the central nervous system. To investigate physiological and pathological functions of mGluR5, noninvasive imaging in a living body with PET technology and an mGluR5-specific radiotracer is urgently needed. Here, we report the synthesis of 3-[(18)F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([(18)F]FPEB) through a convenient thermal reaction as a highly specific PET radiotracer for mGluR5.

View Article and Find Full Text PDF

We report the synthesis and pharmacological properties of several cytisine derivatives. Among them, two 10-substituted derivatives showed much higher selectivities for the alpha4beta2 nAChR subtype in binding assays than cytisine. The 9-vinyl derivative was found to have a very similar agonist activity profile to that of cytisine.

View Article and Find Full Text PDF

Recent genetic and pharmacological studies have suggested that the metabotropic glutamate receptor subtype 5 (mGluR5) may represent a druggable target in identifying new therapeutics for the treatment of various central nervous system disorders including drug abuse. In particular, considerable attention in the mGluR5 field has been devoted to identifying ligands that bind to the allosteric modulatory site, distinct from the site for the primary agonist glutamate. Both 2-methyl-6-(phenylethynyl)pyridine (MPEP) and its analogue 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP) have been shown to be selective and potent noncompetitive antagonists of mGluR5.

View Article and Find Full Text PDF

We have synthesized three different PET ligands to investigate the physiological function of metabotropic glutamate subtype 5 receptors (mGluR5) in vivo: 2-[(11)C]methyl-6-(2-phenylethynyl)pyridine ([(11)C]MPEP), 2-(2-(3-[(11)C]methoxyphenyl)ethynyl)pyridine ([(11)C]M-MPEP) and 2-(2-(5-[(11)C]methoxypyridin-3-yl)ethynyl)pyridine ([(11)C]M-PEPy). [(11)C]Methyl iodide was used to label the compounds under basic conditions, and a Pd(0) catalyst was applied to label [(11)C]MPEP in a Stille coupling reaction. In vivo microPET imaging studies of the functional accumulation of radiolabeled ligands were conducted in 35 rats (Sprague-Dawley, 8 weeks old male, weight of 300 g).

View Article and Find Full Text PDF