Publications by authors named "Tucker Ward"

To compare pharmacy students' performance in a therapeutics course after attending live lectures and/or viewing video-recorded lectures. Attendance was taken during seven lectures spaced equally throughout the therapeutics course. Data on students' viewing of the video-recorded lectures was extracted.

View Article and Find Full Text PDF

Thromboembolism afflicts millions of patients annually in the United States and is associated with a significant cost burden. Oral anticoagulants provide clinicians with options for management of these diseases and their use continues to grow. Accordingly, regulatory, legislative, and nonprofit organizations have set performance standards with the goal of improving patient outcomes, ensuring patient safety, and reducing costs.

View Article and Find Full Text PDF

Accurate detection and quantification of botulinum neurotoxin (BoNT) in complex matrices is required for pharmaceutical, environmental, and food sample testing. Rapid BoNT testing of foodstuffs is needed during outbreak forensics, patient diagnosis, and food safety testing while accurate potency testing is required for BoNT-based drug product manufacturing and patient safety. The widely used mouse bioassay for BoNT testing is highly sensitive but lacks the precision and throughput needed for rapid and routine BoNT testing.

View Article and Find Full Text PDF

Rapid, high-throughput assays that detect and quantify botulinum neurotoxin (BoNT) activity in diverse matrices are required for environmental, clinical, pharmaceutical, and food testing. The current standard, the mouse bioassay, is sensitive but is low in throughput and precision. In this study, we present three biochemical assays for the detection and quantification of BoNT serotype A, B, and F proteolytic activities in complex matrices that offer picomolar to femtomolar sensitivity with small assay volumes and total assay times of less than 24 h.

View Article and Find Full Text PDF

Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete.

View Article and Find Full Text PDF

Methods that do not require animal sacrifice to detect botulinum neurotoxins (BoNTs) are critical for BoNT antagonist discovery and the advancement of quantitative assays for biodefense and pharmaceutical applications. Here we describe the development and optimization of fluorogenic reporters that detect the proteolytic activity of BoNT/A, B, D, E, F, and G serotypes in real time with femtomolar to picomolar sensitivity. Notably, the reporters can detect femtomolar concentrations of BoNT/A in 4h and BoNT/E in 20h, sensitivity that equals that of animal-based methods.

View Article and Find Full Text PDF

Objectives: The ovarian tumor marker CA125 is expressed on human MUC16, a cell surface bound mucin that is also shed by proteolytic cleavage. Human MUC16 is overexpressed by ovarian cancer cells. MUC16 facilitates the binding of ovarian tumor cells to mesothelial cells lining the peritoneal cavity.

View Article and Find Full Text PDF

Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A.

View Article and Find Full Text PDF

In nerve terminals, exocytosis is mediated by SNARE proteins and regulated by Ca(2+) and synaptotagmin-1 (syt). Ca(2+) promotes the interaction of syt with anionic phospholipids and the target membrane SNAREs (t-SNAREs) SNAP-25 and syntaxin. Here, we have used a defined reconstituted fusion assay to determine directly whether syt-t-SNARE interactions couple Ca(2+) to membrane fusion by comparing the effects of Ca(2+)-syt on neuronal (SNAP-25, syntaxin and synaptobrevin) and yeast (Sso1p, Sec9c and Snc2p) SNAREs.

View Article and Find Full Text PDF

Ca2+-triggered exocytosis of synaptic vesicles is controlled by the Ca2+-binding protein synaptotagmin (syt) I. Fifteen additional isoforms of syt have been identified. Here, we compared the abilities of three syt isoforms (I, VII, and IX) to regulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion in vitro in response to divalent cations.

View Article and Find Full Text PDF

Docking and fusion of single proteoliposomes reconstituted with full-length v-SNAREs (synaptobrevin) into planar lipid bilayers containing binary t-SNAREs (anchored syntaxin associated with SNAP25) was observed in real time by wide-field fluorescence microscopy. This enabled separate measurement of the docking rate k(dock) and the unimolecular fusion rate k(fus). On low t-SNARE-density bilayers at 37 degrees C, docking is efficient: k(dock) = 2.

View Article and Find Full Text PDF

Membrane resealing in mammalian cells after injury depends on Ca(2+)-dependent fusion of intracellular vesicles with the plasma membrane. When cells are wounded twice, the subsequent resealing is generally faster. Physiological and biochemical studies have shown the initiation of two different repair signaling pathways, which are termed facilitated and potentiated responses.

View Article and Find Full Text PDF

ATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis.

View Article and Find Full Text PDF

We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of syt-stimulated fusion was modulated by changes in lipid composition of the vesicles and by a truncation that mimics cleavage of SNAP-25 by botulinum neurotoxin A.

View Article and Find Full Text PDF

Amiloride-sensitive epithelial Na(+) channels (ENaCs) are subject to modulation by many factors. Recent data have also linked the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery to this regulation of ENaC, but the molecular mechanisms that underlie this modulation are poorly understood. In this study, we demonstrate that syntaxin 1A physically interacts with ENaC and functionally regulates ENaC activity.

View Article and Find Full Text PDF

Synaptotagmin-1 (syt), the putative Ca2+ sensor for exocytosis, is anchored to the membrane of secretory organelles. Its cytoplasmic domain is composed of two Ca2+-sensing modules, C2A and C2B. Syt binds phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane lipid with an essential role in exocytosis and endocytosis.

View Article and Find Full Text PDF

The synaptotagmins (syts) are a family of membrane proteins proposed to regulate membrane traffic in neuronal and nonneuronal cells. In neurons, the Ca2+-sensing ability of syt I is critical for fusion of docked synaptic vesicles with the plasma membrane in response to stimulation. Several putative Ca2+-syt effectors have been identified, but in most cases the functional significance of these interactions remains unknown.

View Article and Find Full Text PDF

Neuronal exocytosis is mediated by Ca(2+)-triggered rearrangements between proteins and lipids that result in the opening and dilation of fusion pores. Synaptotagmin I (syt I) is a Ca(2+)-sensing protein proposed to regulate fusion pore dynamics via Ca(2+)-promoted binding of its cytoplasmic domain (C2A-C2B) to effector molecules, including anionic phospholipids and other copies of syt. Functional studies indicate that Ca(2+)-triggered oligomerization of syt is a critical step in excitation-secretion coupling; however, this activity has recently been called into question.

View Article and Find Full Text PDF

The Ca(2+)-binding synaptic-vesicle protein synaptotagmin I has attracted considerable interest as a potential Ca(2+) sensor that regulates exocytosis from neurons and neuroendocrine cells. Recent studies have shed new light on the structure, biochemical/biophysical properties and function of synaptotagmin, and the emerging view is that it plays an important role in both exocytosis and endocytosis. At least a dozen additional isoforms exist, some of which are expressed outside of the nervous system, suggesting that synaptotagmins might regulate membrane traffic in a variety of cell types.

View Article and Find Full Text PDF