Publications by authors named "Tuchin V"

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.

View Article and Find Full Text PDF

Objectives: The paper focuses on the development of technology of adipose tissue optical clearing using different complex hyperosmotic optical clearing agents and tissue permeability enhancers.

Methods: To quantify optical clearing efficiency, reduced scattering coefficient was estimated from the ex vivo spatially resolved backreflectance measurements using a multi-distant fiber optical device. Tissue morphology modification was monitored with the help of histological studies.

View Article and Find Full Text PDF

Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields.

View Article and Find Full Text PDF

A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D parameters represent the degree of anisotropy.

View Article and Find Full Text PDF

Fundus photography (FP) is a crucial technique for diagnosing the progression of ocular and systemic diseases in clinical studies, with wide applications in early clinical screening and diagnosis. However, due to the nonuniform illumination and imbalanced intensity caused by various reasons, the quality of fundus images is often severely weakened, brings challenges for automated screening, analysis, and diagnosis of diseases. To resolve this problem, we developed strongly constrained generative adversarial networks (SCGAN).

View Article and Find Full Text PDF

The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFeO nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.

View Article and Find Full Text PDF
Article Synopsis
  • * Current methods have limitations in accuracy, prompting research into better techniques, particularly by analyzing speckle patterns in OCT images.
  • * The study found that local brightness fluctuations from wavelet analysis of OCT data improve the differentiation of glioma from healthy brain tissue, suggesting this approach could enhance neurosurgical diagnostics.
View Article and Find Full Text PDF

Inflammatory dermatoses represent a global problem with increasing prevalence and recurrence among the world population. Topical glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs in dermatology due to a wide range of their therapeutic actions, which, however, have numerous local and systemic side effects. Hence, there is a growing need to create new delivery systems for GCs, ensuring the drug localization in the pathological site, thus increasing the effectiveness of therapy and lowering the risk of side effects.

View Article and Find Full Text PDF

Optical clearing agents (OCAs) are substances that temporarily modify tissue's optical properties, enabling better imaging and light penetration. This study aimed to assess the impact of OCAs on the nail bed and blood using in vivo and in vitro optical methods. In the in vivo part, OCAs were applied to the nail bed, and optical coherence tomography and optical digital capillaroscopy were used to evaluate their effects on optical clearing and capillary blood flow, respectively.

View Article and Find Full Text PDF

The broadband absorption coefficient spectrum of the rabbit lung presents some particular characteristics that allow the identification of the chromophores in this tissue. By performing a weighted combination of the absorption spectra of water, hemoglobin, DNA, proteins and the pigments melanin and lipofuscin, it was possible to obtain a good match to the experimental absorption spectrum of the lung. Such reconstruction provided reasonable information about the contents of the tissue components in the lung tissue, and allowed to identify a similar accumulation of melanin and lipofuscin.

View Article and Find Full Text PDF

In this paper, we study a pattern formation in the epidermal layer of skin during tumor development and appearance of a binary surface consisting of healthy and cancer cells forming Turing patterns under external osmotic pressure. The basic methodology of introducing the external influences, for example, time-targeted drug therapy or radiation exposure, influence of electromagnetic fields, laser radiation or other tumor-targeting physical influences act differently in different phases of the cell cycle. In some cases, this can lead to a slowdown in the growth of cancer cells, and sometimes vice versa.

View Article and Find Full Text PDF

Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches.

View Article and Find Full Text PDF

With the objective of developing new methods to acquire diagnostic information, the reconstruction of the broadband absorption coefficient spectra (μ [λ]) of healthy and chromophobe renal cell carcinoma kidney tissues was performed. By performing a weighted sum of the absorption spectra of proteins, DNA, oxygenated, and deoxygenated hemoglobin, lipids, water, melanin, and lipofuscin, it was possible to obtain a good match of the experimental μ (λ) of both kidney conditions. The weights used in those reconstructions were estimated using the least squares method, and assuming a total water content of 77% in both kidney tissues, it was possible to calculate the concentrations of the other tissue components.

View Article and Find Full Text PDF

The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a well-established cancer treatment method that employs light to generate reactive oxygen species (ROS) causing oxidative damage to cancer cells. Nevertheless, PDT encounters challenges due to its oxygen-dependent nature, which makes it less effective in hypoxic tumor environments. To address this issue, we have developed a novel nanocomposite known as AuNC@BBR@Ghost.

View Article and Find Full Text PDF

Correct classification of skin lesions is a key step in skin cancer screening, which requires high accuracy and interpretability. This paper proposes a multimodal method for differentiating various clinical forms of basal cell carcinoma and benign neoplasms that includes machine learning. This study was conducted on 37 neoplasms, including benign neoplasms and five different clinical forms of basal cell carcinoma.

View Article and Find Full Text PDF

We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser.

View Article and Find Full Text PDF

The biggest obstacle to optical imaging is light attenuation in biological tissues. Conventional clearing techniques, such as agent-based clearing, improve light penetration depth by reducing scattering, but they are hampered by drawbacks including toxicity, low efficiency, slowness, and superficial performance, which prevent them from resolving the attenuation problem on their own. Therefore, quick, safe, and effective procedures have been developed.

View Article and Find Full Text PDF

The results of in vivo immersion optical clearing of human skin under the action of two different optical clearing agents (OCAs), such as an aqueous sucrose solution and a radiographic contrast agent Omnipaque™ 300 (iohexol), were obtained with the use of optical coherence tomography (OCT) method. The rate of reduction of light scattering coefficient, obtained through an averaged A-scan of the OCT image in the region of dermis within the depths from 350 to 700 μm, were determined to evaluate the efficiency of optical clearing (EOC). The correlations between the EOC and the energy of intermolecular interaction of OCAs with a fragment of collagen peptide have been established as a result of molecular modeling by quantum chemistry methods HF/STO3G/DFT/B3LYP/6-311G(d) of a number of OCAs (glycerol, iohexol, sucrose, ribose, fructose, glucose) with mimetic peptide of collagen (GPH) .

View Article and Find Full Text PDF

(1) Background: The use of electronic cigarettes has become widespread in recent years. The use of e-cigarettes leads to milder pathological conditions compared to traditional cigarette smoking. Nevertheless, e-liquid vaping can cause morphological changes in lung tissue, which affects and impairs gas exchange.

View Article and Find Full Text PDF

Ex vivo porcine lung immersed in e-liquid was investigated in-depth using confocal Raman micro-spectroscopy to assess the e-liquid influence on the lung. It was found that lung-related Raman band intensities at 1002, 1548, 1618 and 1655 cm increased after first and second treatments except the surface, which was attributed to the well-known optical clearing (OC) effect due to alveoli filling with e-liquid resulting in light scattering reduction. The autofluorescence enhancement was explained by oxidative stress induced in lung during exposure to e-liquid.

View Article and Find Full Text PDF

Terahertz (THz) technology offers a variety of applications in label-free medical diagnosis and therapy, majority of which rely on the effective medium theory that assumes biological tissues to be optically isotropic and homogeneous at the scale posed by the THz wavelengths. Meanwhile, most recent research discovered mesoscale ([Formula: see text]) heterogeneities of tissues; [Formula: see text] is a wavelength. This posed a problem of studying the related scattering and polarization effects of THz-wave-tissue interactions, while there is still a lack of appropriate tools and instruments for such studies.

View Article and Find Full Text PDF