Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins.
View Article and Find Full Text PDFA 78-year-old man was referred to clinic due to a 5-year history of weight loss, lethargy, and pathology showing hyponatremia. In the year prior, he had a hospital admission for symptomatic hyponatremia. MRI brain during that admission showed a 1-2 mm pituitary lesion of unknown significance.
View Article and Find Full Text PDFZetomipzomib (KZR-616) is a selective inhibitor of the immunoproteasome currently undergoing clinical investigation in autoimmune disorders. Here, we characterized KZR-616 and using multiplexed cytokine analysis, lymphocyte activation and differentiation, and differential gene expression analysis. KZR-616 blocked production of >30 pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs), polarization of T helper (Th) cells, and formation of plasmablasts.
View Article and Find Full Text PDFImplantation of insulin-secreting cells has been trialed as a treatment for Type 1 diabetes mellitus; however, the host immunogenic response limits their effectiveness. The authors developed a core-shell nanostructure of upconversion nanoparticle-mesoporous silica for controlled local delivery of an immunomodulatory agent, MCC950, using near-infrared light and validated it in models of fibrosis. The individual components of the nanosystem did not affect the proliferation of insulin-secreting cells, unlike fibroblast proliferation (p < 0.
View Article and Find Full Text PDFDrug-delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with controllable drug-release systems (DRSs) is still in its nascent stage. In this paper, we designed a two-way controlled drug-release system that can be promoted and prolonged, using the external stimulation of near-infrared light (NIR) and protein coating.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring.
View Article and Find Full Text PDFImmunoprotection and oxygen supply are vital in implementing a cell therapy for type 1 diabetes (T1D). Without these features, the transplanted islet cell clusters will be rejected by the host immune system, and necrosis will occur due to hypoxia. The use of anti-rejection drugs can help protect the transplanted cells from the immune system; yet, they also may have severe side effects.
View Article and Find Full Text PDFIntroduction: Delirium is one of the most common conditions diagnosed in hospitalised older people and is associated with numerous adverse outcomes, yet there are no proven pharmacological treatments. Recent research has identified cerebral glucose hypometabolism as a pathophysiological mechanism offering a therapeutic target in delirium. Insulin, delivered via the intranasal route, acts directly on the central nervous system and has been shown to enhance cerebral metabolism and improve cognition in patients with mild cognitive impairment and dementia.
View Article and Find Full Text PDFReplacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion.
View Article and Find Full Text PDFTRK fusions are found in a variety of cancer types, lead to oncogenic addiction, and strongly predict tumor-agnostic efficacy of TRK inhibition. With the recent approval of the first selective TRK inhibitor, larotrectinib, for patients with any TRK-fusion-positive adult or pediatric solid tumor, to identify mechanisms of treatment failure after initial response has become of immediate therapeutic relevance. So far, the only known resistance mechanism is the acquisition of on-target TRK kinase domain mutations, which interfere with drug binding and can potentially be addressable through second-generation TRK inhibitors.
View Article and Find Full Text PDFType 1 diabetes, characterized by autoimmune destruction of pancreatic beta cells, affects 41 million people worldwide. Beta cell replacement therapies have immense potential as a treatment option because pancreatic progenitors derived from human pluripotent stem cells can provide a near limitless supply of transplantable tissue. The key limitation of this approach is the need for lifelong use of immunosuppressive drugs that have undesirable side effects.
View Article and Find Full Text PDFNew and more efficient methods of gene editing have intensified the ethical and legal issues associated with editing germlines. Yet no research has separated the impact of hereditary concern on public attitudes from moral concern. This research compares the impact these two concerns have on public attitudes across five applications including, the prevention of human disease, human and animal research, animals for the use of human food and the enhancement of human appearance.
View Article and Find Full Text PDFBackground: NTRK1, NTRK2 and NTRK3 gene fusions (NTRK gene fusions) occur in a range of adult cancers. Larotrectinib is a potent and highly selective ATP-competitive inhibitor of TRK kinases and has demonstrated activity in patients with tumours harbouring NTRK gene fusions.
Patients And Methods: This multi-centre, phase I dose escalation study enrolled adults with metastatic solid tumours, regardless of NTRK gene fusion status.
Technology is now available which facilitates gene editing and has recently been applied internationally to embryos in the laboratory. A 2002 law in Australia prohibits making heritable changes in embryos, regardless of whether the treated embryo is discarded thereafter. We sought to begin to understand public opinion in Australia about this matter, using a questionnaire given to the audience attending a Q and A panel of experts.
View Article and Find Full Text PDFRearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown.
View Article and Find Full Text PDFBackground: Alterations involving the RET kinase are implicated in the pathogenesis of lung, thyroid and other cancers. However, the clinical activity of multikinase inhibitors (MKIs) with anti-RET activity in RET-altered patients appears limited, calling into question the therapeutic potential of targeting RET. LOXO-292 is a selective RET inhibitor designed to inhibit diverse RET fusions, activating mutations and acquired resistance mutations.
View Article and Find Full Text PDFBackground: Gene fusions involving NTRK1, NTRK2, or NTRK3 (TRK fusions) are found in a broad range of paediatric and adult malignancies. Larotrectinib, a highly selective small-molecule inhibitor of the TRK kinases, had shown activity in preclinical models and in adults with tumours harbouring TRK fusions. This study aimed to assess the safety of larotrectinib in paediatric patients.
View Article and Find Full Text PDFBackground: Fusions involving one of three tropomyosin receptor kinases (TRK) occur in diverse cancers in children and adults. We evaluated the efficacy and safety of larotrectinib, a highly selective TRK inhibitor, in adults and children who had tumors with these fusions.
Methods: We enrolled patients with consecutively and prospectively identified TRK fusion-positive cancers, detected by molecular profiling as routinely performed at each site, into one of three protocols: a phase 1 study involving adults, a phase 1-2 study involving children, or a phase 2 study involving adolescents and adults.
Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC).
View Article and Find Full Text PDFPericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated islets. A strategy to combat PFO is the use of mesenchymal stem cells (MSC). MSC have anti-inflammatory properties and their potential can be enhanced by stimulation with proinflammatory cytokines.
View Article and Find Full Text PDF