Publications by authors named "Tubo R"

Regenerative medicine (RM) is a fascinating area of research and innovation. The huge potential of the field has been fairly underexploited so far. Both TERMIS-AM and TERMIS-EU Industry Committees are committed to mentoring and training young entrepreneurs for more successful commercial translation of upstream research.

View Article and Find Full Text PDF

Introduction: Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate.

View Article and Find Full Text PDF
Article Synopsis
  • MSC therapy has been investigated for its potential in treating autoimmune diseases like lupus, specifically using the NZB/W mouse model.
  • When NZB/W mice were treated with MSCs, the results showed worsening of the disease and increased levels of harmful autoantibodies.
  • The findings indicate that MSCs may enhance the activity of plasma cells, which could explain the exacerbation of kidney issues in treated mice, suggesting MSC therapy is not effective for Th2-type diseases like lupus.
View Article and Find Full Text PDF

Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft.

View Article and Find Full Text PDF

Recent advances in tissue engineering offer considerable promise for the repair of focal lesions in articular cartilage. Here we describe (1) the macromolecular organization of tissue-engineered neocartilage grafts at light and electron microscopic levels, (2) their in vitro development, and (3) the effect of chondrocyte dedifferentiation, induced by monolayer expansion, on their resultant structure. We show that grafts produced from primary cultures of chondrocytes are hyaline in appearance with identifiable zonal strata as evidenced by cell morphology, matrix organization, and immunohistochemical composition.

View Article and Find Full Text PDF

Adult human bone marrow-derived stem cells, having the ability to differentiate into cells of multiple lineages, have been isolated and propagated by varied protocols, including positive (CD105(+))/negative (CD45(-)GlyA(-)) selection with immunomagnetic beads, or direct plating into selective culture media. Each substratum-adherent cell population was subjected to a systematic analysis of their cell surface markers and differentiation potential. In the initial stages of culture, each cell population proliferated slowly, reaching confluence in 10-14 days.

View Article and Find Full Text PDF

Articular chondrocytes undergo a rapid change in phenotype and gene expression, termed dedifferentiation, when isolated from cartilage tissue and cultured on tissue culture plastic. On the other hand, "redifferentiation" of articular chondrocytes in suspension culture is characterized by decreased cellular proliferation and the reinitiation of synthesis of hyaline articular cartilage extracellular matrix molecules. The molecular triggers for these events have yet to be defined.

View Article and Find Full Text PDF

Dedifferentiated human articular chondrocytes exhibited a wide variation in their capacity to proliferate and redifferentiate in an alginate suspension culture system. The greatest extent of proliferation and redifferentiation was seen to be dependent on the formation of clonal populations of chondrocytes and correlated inversely with the initial cell seeding density. Redifferentiating chondrocytes seeded at low density (1 x 10(4) cells/ml alginate) compared with chondrocytes that were seeded at high density (1 x 10(6) cells/ml alginate) showed a nearly 3-fold higher median increase in cell number.

View Article and Find Full Text PDF

The disability and pain that result from damage to articular cartilage within the knee joint has stimulated the development of several approaches to facilitate the restoration of joint function (1-9). Recently, cultured autologous chondrocytes, isolated from an individual's own cartilage, have been expanded in vitro, and then implanted into the damaged site for repair of damaged knee cartilage (10). This remarkable process has been characterized by the modulation of gene expression during proliferation expansion and subsequent redifferentiation of cultured chondrocytes in vitro (11) and in vivo (12).

View Article and Find Full Text PDF

Tissue Engineering is an emerging field of medical research in which there is tremendous activity. Many of these products rely on the use of a cellular component co-formulated with a natural or synthetic biomaterial. At this time, though, there are no consensus safety or efficacy standards for tissue-engineered products.

View Article and Find Full Text PDF

Chondrocytes that were isolated from adult human articular cartilage changed phenotype during monolayer tissue culture, as characterized by a fibroblastic morphology and cellular proliferation. Increased proliferation was accompanied by downregulation of the cartilage-specific extracellular matrix proteoglycan, aggrecan, by cessation of type-II collagen expression, and by upregulation of type-I collagen and versican. This phenomenon observed in monolayer was reversible after the transfer of cells to a suspension culture system.

View Article and Find Full Text PDF

The Epicel ASAProgram service generates autologous keratinocyte grafts used for the closure of full-thickness wounds in moderately and severely burned patients. The manufacturing process used to generate Epicel service autografts (ESA) is based upon the keratinocyte co-culture technique described by Rheinwald and Green which employs murine Swiss 3T3/J2 fibroblasts as feeder cells. Recently, a technique has been described that employs a polyurethane wound dressing, HydroDerm (HD, Innovative Technologies, Ltd), as a delivery vehicle for cultured keratinocytes intended for autologous grafting.

View Article and Find Full Text PDF

Reexpression of aggrecan and type II collagen genes in dedifferentiated adult human articular chondrocytes (AHAC) in suspension culture varied widely depending on the specific lot of bovine serum used to supplement the culture medium. Some lots of serum provided strong induction of aggrecan and type II collagen expression by AHAC while others did not stimulate significant production of these hyaline cartilage extracellular matrix molecules even following several weeks in culture. Addition of 50 ng/ml insulin-like growth factor-I (IGF-I) to a deficient serum lot significantly enhanced its ability to induce aggrecan and type II collagen mRNA.

View Article and Find Full Text PDF

In this study a canine model was developed to investigate the nature of early healing responses to both chondral and osteochondral defects and to evaluate the tissue regenerative capacity of cultured autologous chondrocytes in chondral defects. The healing response to surgically created chondral defects was minor, with little cellular infiltration. In contrast, osteochondral defects exhibited a rapid cellular response, resulting ultimately in the formation of fibrous tissue.

View Article and Find Full Text PDF

Translocation of DNA during in vitro DNA synthesis on nuclear matrix bound replicational assemblies from regenerating rat liver was determined by measuring the processivity (average number of nucleotides added following one productive binding event of the polymerase to the DNA template) of nuclear matrix bound DNA polymerase alpha with poly(dT).oligo(A)10 as template primer. The matrix-bound polymerase had an average processivity (28.

View Article and Find Full Text PDF

The nature of the lesion in growth control exerted by the cancer-derived c-H-ras mutation, EJ-ras, and its transforming potential in diploid cells are both poorly understood. We introduced EJ-ras into normal, diploid human mesothelial cells and fibroblasts and obtained transfectants expressing p21EJ-ras. All clones examined were independent of EGF for rapid growth, and all secreted an EGF-like mitogen into the medium at levels sufficient to satisfy the EGF requirement of normal cells.

View Article and Find Full Text PDF

Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver.

View Article and Find Full Text PDF

The majority of DNA polymerase alpha and primase activities bound to the nuclear matrix of regenerating rat liver were released into an extract by a mild sonication procedure. During maximal in vivo replication (22-h posthepatectomy) most of the solubilized alpha-polymerase and primase cosedimented at approximately 100 and 150 S as discrete megacomplexes with smaller amounts at 10 and 17 S. In contrast, high salt extracts obtained during nuclear matrix isolation as well as matrix extracts prepared just before the onset of in vivo replication (14-h posthepatectomy) were completely devoid of megacomplexes.

View Article and Find Full Text PDF

As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei.

View Article and Find Full Text PDF

Alkaline cesium chloride gradient analysis of in vivo [3H]bromodeoxyuridine-labeled and in vitro [alpha-32P]dCTP-labeled DNA was used to determine whether in vitro DNA synthesis in regenerating rat liver nuclei and nuclear matrices continued from sites of replication initiated in vivo. At least 70 and 50% of the products of total nuclear and matrix-bound in vitro DNA synthesis, respectively, were continuations of in vivo initiated replicational forks. The relationship of the in vitro DNA synthetic sites in total nuclei versus the nuclear matrix was examined by using [3H]bromodeoxyuridine triphosphate to density label in vitro synthesized DNA in isolated nuclei and [alpha-32P]dCTP to label DNA synthesized in isolated nuclear matrix.

View Article and Find Full Text PDF