Deep eutectic solvents have attracted considerable attention due to their unique properties and their potential to replace conventional solvents in diverse applications, such as catalysis, energy storage, and green chemistry. However, despite their broad use, the microscopic mechanisms governing solvation dynamics and the role of hydrogen bonding in deep eutectic solvents remain insufficiently understood. In this article, we present our contributions toward unravelling the micro heterogeneity within deep eutectic solvents by combining vibrational Stark spectroscopy and two-dimensional infrared spectroscopy with molecular dynamics simulations.
View Article and Find Full Text PDFDiols, characterized by the presence of two hydroxyl groups, form extended hydrogen-bonded networks. Increasing hydrocarbon chain length is known to elevate the viscosity of diols. Given the established influence of viscosity on solvent dynamics, it becomes imperative to comprehend the impact of viscosity on the fluctuation dynamics within diols and establish connections with hydrogen bond formation and breaking dynamics.
View Article and Find Full Text PDFDeep eutectic solvents, promising green alternatives to conventional solvents, consist of a hydrogen bond donor and a hydrogen bond acceptor. The hydrogen bonding components in deep eutectic solvents form an extended hydrogen bonding network, which can be tuned to specific applications by changing the hydrogen bond donors. In this work, we have changed the hydrogen bond donor from a diol to a dicarboxylic acid by systematically replacing a hydroxyl group with an acid group one at a time to investigate the solvation structure and dynamics of the deep eutectic systems.
View Article and Find Full Text PDFDeep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions.
View Article and Find Full Text PDF