Publications by authors named "Tuan-Hua Ho"

Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost.

View Article and Find Full Text PDF

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions.

View Article and Find Full Text PDF

The aim of this study was to develop an efficient bioinoculant for amelioration of adverse effects from chilling stress (10°C), which are frequently occurred during rice seedling stage. Seed germination bioassay under chilling condition with rice (Oryza sativa L.) cv.

View Article and Find Full Text PDF

Background: β-1,4-endoglucanase (EG) is one of the three types of cellulases used in cellulose saccharification during lignocellulosic biofuel/biomaterial production. GsCelA is an EG secreted by the thermophilic bacterium Geobacillus sp. 70PC53 isolated from rice straw compost in southern Taiwan.

View Article and Find Full Text PDF

Background: Lignocellulolytic enzymes are essential for agricultural waste disposal and production of renewable bioenergy. Many commercialized cellulase mixtures have been developed, mostly from saprophytic or endophytic fungal species. The cost of complete cellulose digestion is considerable because a wide range of cellulolytic enzymes is needed.

View Article and Find Full Text PDF

Intrinsically disordered proteins function as flexible stress modulators in vivo through largely unknown mechanisms. Here, we elucidated the mechanistic role of an intrinsically disordered protein, REPETITIVE PRO-RICH PROTEIN (RePRP), in regulating rice () root growth under water deficit. With nearly 40% Pro, RePRP is induced by water deficit and abscisic acid (ABA) in the root elongation zone.

View Article and Find Full Text PDF

Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance.

View Article and Find Full Text PDF

Most crops cannot germinate underwater. Rice exhibits certain degrees of tolerance to oxygen deficiency for anaerobic germination (AG) and anaerobic seedling development (ASD). Direct rice seeding, whereby seeds are sown into soil rather than transplanting seedlings from the nursery, becomes an increasingly popular cultivation method due to labor shortages and opportunities for sustainable cultivation.

View Article and Find Full Text PDF

Background: To produce second-generation biofuels, enzymatic catalysis is required to convert cellulose from lignocellulosic biomass into fermentable sugars. β-Glucosidases finalize the process by hydrolyzing cellobiose into glucose, so the efficiency of cellulose hydrolysis largely depends on the quantity and quality of these enzymes used during saccharification. Accordingly, to reduce biofuel production costs, new microbial strains are needed that can produce highly efficient enzymes on a large scale.

View Article and Find Full Text PDF

Autotrophic plants have evolved distinctive mechanisms for maintaining a range of homeostatic states for sugars. The on/off switch of reversible gene expression by sugar starvation/provision represents one of the major mechanisms by which sugar levels are maintained, but the details remain unclear. α-Amylase (αAmy) is the key enzyme for hydrolyzing starch into sugars for plant growth, and it is induced by sugar starvation and repressed by sugar provision.

View Article and Find Full Text PDF

Laccases that are tolerant to organic solvents are powerful bio-catalysts with broad applications in biotechnology. Most of these uses must be accomplished at high concentration of organic solvents, during which proteins undergo unfolding, thereby losing enzyme activity. Here we show that organic-solvent pre-incubation provides effective and reversible 1.

View Article and Find Full Text PDF

Unlabelled: A high-efficiency laccase, DLac, was isolated from sp. RSD1. The kinetic studies indicate that DLac is a diffusion-limited enzyme.

View Article and Find Full Text PDF

Ectopic expression of the rice WINDING 1 (WIN1) gene leads to a spiral phenotype only in shoots but not in roots. Rice WIN1 belongs to a specific class of proteins in cereal plants containing a Bric-a-Brac/Tramtrack/Broad (BTB) complex, a non-phototropic hypocotyl 3 (NPH3) domain and a coiled-coil motif. The WIN1 protein is predominantly localized to the plasma membrane, but is also co-localized to plasmodesmata, where it exhibits a punctate pattern.

View Article and Find Full Text PDF
Article Synopsis
  • - Rice (Oryza sativa L.) is a crucial global crop, and as the world population grows, there's a pressing need for sustainable agricultural practices which necessitate better understanding rice genetics via shared research resources.
  • - A significant rice insertional mutant population has been created using the japonica variety Tainung 67, comprising about 93,000 mutant lines, with a majority featuring phenomic and flanking sequence data.
  • - The Taiwan Rice Insertional Mutants Database allows researchers to search for phenotypes and integration sites, facilitating the identification of new genes and insights into the relationships among rice varieties, cultivation locations, and cropping seasons.
View Article and Find Full Text PDF

Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist.

View Article and Find Full Text PDF

A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors.

View Article and Find Full Text PDF

Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp.

View Article and Find Full Text PDF

Communication between source organs (exporters of photoassimilates) and sink organs (importers of fixed carbon) has a pivotal role in carbohydrate assimilation and partitioning during plant growth and development. Plant productivity is enhanced by sink strength and source activity, which are regulated by a complex signaling network encompassing sugars, hormones, and environmental factors. However, key components underlying the signaling pathways that regulate source-sink communication are only now beginning to be discovered.

View Article and Find Full Text PDF
Article Synopsis
  • * Transfer DNA (T-DNA) insertional mutagenesis is a valuable method that allows for efficient gene knockout and activation within rice, aiding in functional genomics research.
  • * The paper emphasizes utilizing T-DNA-tagged rice mutants to improve gene characterization and crop enhancement through advanced genetic approaches, ultimately benefiting rice and other cereals.
View Article and Find Full Text PDF

Regulation of root architecture is essential for maintaining plant growth under adverse environment. A synthetic abscisic acid (ABA)/stress-inducible promoter was designed to control the expression of a late embryogenesis abundant protein (HVA1) in transgenic rice. The background of HVA1 is low but highly inducible by ABA, salt, dehydration and cold.

View Article and Find Full Text PDF
Article Synopsis
  • - Drought significantly impacts soybean productivity, prompting research into genetic modifications to improve stress tolerance by introducing the DREB1D transcription factor from Arabidopsis thaliana using Agrobacterium-mediated gene transfer.
  • - Transgenic soybeans with an ABA-inducible promoter exhibited increased transgene expression under drought but had reduced overall leaf area and biomass compared to non-transgenic plants when well-watered.
  • - Under drought conditions, the transgenic plants showed improved water retention, slower wilting, higher survival rates, and better leaf cell membrane stability, highlighting the potential for engineering drought-resistant soybeans.
View Article and Find Full Text PDF

Cellulosic biomass is an abundant and promising energy source. To make cellulosic biofuels competitive against conventional fuels, conversion of rigid plant materials into sugars must become efficient and cost-effective. During cellulose degradation, cellulolytic enzymes generate cellobiose (β-(1→4)-glucose dimer) molecules, which in turn inhibit such enzymes by negative feedback.

View Article and Find Full Text PDF

In plants, source-sink communication plays a pivotal role in crop productivity, yet the underlying regulatory mechanisms are largely unknown. The SnRK1A protein kinase and transcription factor MYBS1 regulate the sugar starvation signaling pathway during seedling growth in cereals. Here, we identified plant-specific SnRK1A-interacting negative regulators (SKINs).

View Article and Find Full Text PDF

In the root of rice (Oryza sativa), abscisic acid (ABA) treatment, salinity, or water deficit stress induces the expression of a family of four genes, REPETITIVE PROLINE-RICH PROTEIN (RePRP). These genes encode two subclasses of novel proline-rich glycoproteins with highly repetitive PX₁PX₂ motifs, RePRP1 and RePRP2. RePRP orthologs exist only in monocotyledonous plants, and their functions are virtually unknown.

View Article and Find Full Text PDF

Over the years, culturable cellulase-producing microorganisms have been isolated from a variety of sources and genes of cellulolytic enzymes have been cloned. Then again, the "great plate count anomaly" phenomenon necessitates a culture-independent metagenomic approach for the isolation of cellulolytic genes from microorganisms in their natural environment. We have constructed a metagenomic library derived from rice straw composts.

View Article and Find Full Text PDF