Publications by authors named "Tuan Qi"

Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease.

View Article and Find Full Text PDF

As one of the most induced genes in activated macrophages, immune-responsive gene 1 (IRG1) encodes a mitochondrial metabolic enzyme catalysing the production of itaconic acid (ITA). Although ITA has an anti-inflammatory property, the underlying mechanisms are not fully understood. Here we show that ITA is a potent inhibitor of the TET-family DNA dioxygenases.

View Article and Find Full Text PDF

Background: Loss of dystrophin protein causes Duchenne muscular dystrophy (DMD), characterized by progressive degeneration of cardiac and skeletal muscles, and mortality in adolescence or young adulthood. Although cardiac failure has risen as the leading cause of mortality in patients with DMD, effective therapeutic interventions remain underdeveloped, in part, because of the lack of a suitable preclinical model.

Methods: We analyzed a novel murine model of DMD created by introducing a 4-bp deletion into exon 4, one of the exons encoding the actin-binding domain 1 of dystrophin (referred to as mice).

View Article and Find Full Text PDF

Plasma cells provide high-affinity antibodies against invading pathogens. Although transcriptional and epigenetic mechanisms have been extensively studied for plasma cell differentiation, how these mechanisms respond to environmental cues remains largely unexplored. In this study, we show that ascorbic acid (vitamin C), an essential nutrient, is able to promote plasma cell differentiation and humoral immune response by enhancing TET2/3-mediated DNA demethylation.

View Article and Find Full Text PDF

The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression.

View Article and Find Full Text PDF