Using the open-source image analysis software CellProfiler to automatically quantify antibody-stained or fluorescently labeled macrophages in situ provides accurate and reproducible cell counts. It is a vastly enhanced alternative method to both manual cell counting and estimation of cell marker expression based on fluorescence intensity. Quantification of tissue-resident macrophages acquired on widefield or confocal microscopes can be batch processed using our pipeline to produce data within minutes.
View Article and Find Full Text PDFMicroglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions.
View Article and Find Full Text PDFMicroglia constitute the major immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other glial cells. These resident immune cells are critical for proper brain development, actively maintain brain health throughout the lifespan and rapidly adapt their function to the physiological or pathophysiological needs of the organism. Cutting-edge fate mapping and imaging techniques applied to animal models enabled a revolution in our understanding of their roles during normal physiological conditions.
View Article and Find Full Text PDFIn the version of this paper originally published, one of the affiliations for Dominic Mai was incorrect: "Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany" should have been "Life Imaging Center, Center for Biological Systems Analysis, Albert-Ludwigs-University, Freiburg, Germany." This change required some renumbering of subsequent author affiliations. These corrections have been made in the PDF and HTML versions of the article, as well as in any cover sheets for associated Supplementary Information.
View Article and Find Full Text PDFThe innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are.
View Article and Find Full Text PDFU-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.
View Article and Find Full Text PDFMicroglia are yolk sac-derived macrophages residing in the parenchyma of brain and spinal cord, where they interact with neurons and other glial. After different conditioning paradigms and bone marrow (BM) or hematopoietic stem cell (HSC) transplantation, graft-derived cells seed the brain and persistently contribute to the parenchymal brain macrophage compartment. Here we establish that graft-derived macrophages acquire, over time, microglia characteristics, including ramified morphology, longevity, radio-resistance and clonal expansion.
View Article and Find Full Text PDFActa Neuropathol Commun
September 2018
Microglia are brain immune cells that constantly survey their environment to maintain homeostasis. Enhanced microglial reactivity and proliferation are typical hallmarks of neurodegenerative diseases. Whether specific disease-linked microglial subsets exist during the entire course of neurodegeneration, including the recovery phase, is currently unclear.
View Article and Find Full Text PDFMicroglia as tissue macrophages contribute to the defense and maintenance of central nervous system (CNS) homeostasis. Little is known about the epigenetic signals controlling microglia function in vivo. We employed constitutive and inducible mutagenesis in microglia to delete two class I histone deacetylases, Hdac1 and Hdac2.
View Article and Find Full Text PDFMicroglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS) that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions.
View Article and Find Full Text PDFMicroglia constitute a highly specialized network of tissue-resident immune cells that is important for the control of tissue homeostasis and the resolution of diseases of the CNS. Little is known about how their spatial distribution is established and maintained in vivo. Here we establish a new multicolor fluorescence fate mapping system to monitor microglial dynamics during steady state and disease.
View Article and Find Full Text PDFCurr Opin Neurobiol
August 2016
Microglia are tissue resident macrophages of the central nervous system (CNS) that maintain homeostasis and respond to immune challenges. New genetic fate mapping tools have revealed a yolk sac origin of microglia. Once established in the CNS, microglia persist throughout the lifetime of the organism behind the blood-brain barrier and maintain themselves by self-renewal.
View Article and Find Full Text PDFMicroglia are the only immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other types of glial cells. The past decade has witnessed a revolution in our understanding of their roles during normal physiological conditions. Cutting-edge techniques revealed that these resident immune cells are critical for proper brain development, actively maintain health in the mature brain, and rapidly adapt their function to physiological or pathophysiological needs.
View Article and Find Full Text PDFMicroglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called "microgliopathies". However, how the intracellular stimulation machinery in microglia is controlled is poorly understood.
View Article and Find Full Text PDFActa Neuropathol
September 2014
Microglia are highly specialized tissue macrophages of the brain with dedicated functions in neuronal development, homeostasis and recovery from pathology Despite their unique localization in the central nervous system (CNS), microglia are ontogenetically and functionally related to their peripheral counterparts of the mononuclear phagocytic system in the body, namely tissue macrophages and circulating myeloid cells. Recent developments provided new insights into the myeloid system in the body with microglia emerging as intriguing unique archetypes. Similar to other tissue macrophages, microglia develop early during embryogenesis from immature yolk sac progenitors.
View Article and Find Full Text PDFMicroglia were previously attributed to be vital brain guardians for neuronal survival and synaptic pruning during development as well as for the brain's fight against environmental pathogens. A new report in Nature by the Heneka, Latz and Golenbock groups, however, sheds new light on these distinct myeloid cells by revealing their deadly nature for mature neurons during neurodegeneration.
View Article and Find Full Text PDFEssential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as well as the endohypothalamic circuitry.
View Article and Find Full Text PDFIn the present study, profiles of protein expression were examined during early development of zebrafish, an increasingly popular experimental model in vertebrate development and human diseases. By 2-DE, an initial increase in protein spots from 6 h post-fertilization (hpf) to 8-10 hpf was observed. There was no dramatic change in protein profiles up to 18 hpf, but significant changes occurred in subsequent stages.
View Article and Find Full Text PDFIn the present study, new applications of the transgenic technology in developing novel varieties of ornamental fish and bioreactor fish were explored in a model fish, the zebrafish (Danio rerio). Three "living color" fluorescent proteins, green fluorescent protein (GFP), yellow fluorescent protein (YFP), and red fluorescent protein (RFP or dsRed), were expressed under a strong muscle-specific mylz2 promoter in stable lines of transgenic zebrafish. These transgenic zebrafish display vivid fluorescent colors (green, red, yellow, or orange) visible to unaided eyes under both daylight and ultraviolet light in the dark.
View Article and Find Full Text PDF