This review examines the use of large language models (LLMs) in cancer, analysing articles sourced from PubMed, Embase, and Ovid Medline, published between 2017 and 2024. Our search strategy included terms related to LLMs, cancer research, risks, safeguards, and ethical issues, focusing on studies that utilized text-based data. 59 articles were included in the review, categorized into 3 segments: quantitative studies on LLMs, chatbot-focused studies, and qualitative discussions on LLMs on cancer.
View Article and Find Full Text PDFDuring infection, the pathogen's entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host-pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein-protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available.
View Article and Find Full Text PDF