Publications by authors named "TuKiet Lam"

Background: The differential diagnosis of Alzheimer’s disease (AD) and normal pressure hydrocephalus (NPH) is complicated by overlapping clinical manifestations. This challenges accurate clinical diagnosis and highlights the need for molecular level investigations to understand underlying pathologies. There have been few proteomic investigations into NPH, which were limited by low sample sizes and limited analytical depth.

View Article and Find Full Text PDF

Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability.

View Article and Find Full Text PDF

Background: Identifying neurobiological targets predictive of the molecular neuropathophysiological signature of human opioid use disorder (OUD) could expedite new treatments. OUD is characterized by dysregulated cognition and goal-directed behavior mediated by the orbitofrontal cortex (OFC), and next-generation sequencing could provide insights regarding novel targets.

Methods: Here, we used machine learning to evaluate human post-mortem OFC RNA-sequencing datasets from heroin-users and controls to identify transcripts predictive of heroin use.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is linked to inflammation, and researchers studied brain cells in late-stage PD using advanced techniques to understand vulnerabilities.
  • They analyzed brain samples from six PD patients and six healthy controls, identifying distinct changes in eight cell types, including increased T cells in PD and marked alterations in excitatory neurons.
  • Comparisons with Alzheimer's disease revealed that while neuron changes were different, both diseases shared some changes in glial cells, indicating unique underlying mechanisms for neuronal vulnerability in PD versus AD.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the main active component of cannabis, THC, affects the signaling of extracellular vesicles (EVs) in the brain, which play a role in intercellular communication.
  • THC was found to activate certain cells in the brain, leading to increased expression of cannabinoid receptors and the release of EVs containing RNA.
  • Additionally, the research showed that both acute and chronic THC exposure had different effects on EV proteins, with variations based on sex, enhancing our understanding of cannabis's impact on brain signaling.
View Article and Find Full Text PDF

Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM.

View Article and Find Full Text PDF

Junctions between the ER and plasma membrane (PM) are implicated in calcium homeostasis, non-vesicular lipid transfer, and other cellular functions. Two ER proteins that function both as tethers to the PM via a polybasic C-terminus motif and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. We report that both proteins also form a complex with band 4.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially because of subventricular zone contact. Despite this, cross-talk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood.

View Article and Find Full Text PDF

Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix.

View Article and Find Full Text PDF

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study.

View Article and Find Full Text PDF

Calorie restriction (CR) provides anti-aging benefits through diverse processes, such as reduced metabolism and growth and increased mitochondrial activity. Although controversy still exists regarding CR-mediated lifespan effects, many researchers are seeking interventions that mimic the effects of CR. Yeast has proven to be a useful model system for aging studies, including CR effects.

View Article and Find Full Text PDF

It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness.

View Article and Find Full Text PDF

To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors.

View Article and Find Full Text PDF

Opioid use disorder (OUD) is a public health crisis currently being exacerbated by increased rates of use and overdose of synthetic opioids, primarily fentanyl. Therefore, the identification of novel biomarkers and treatment strategies to reduce problematic fentanyl use and relapse to fentanyl taking is critical. In recent years, there has been a growing body of work demonstrating that the gut microbiome can serve as a potent modulator of the behavioral and transcriptional responses to both stimulants and opioids.

View Article and Find Full Text PDF

Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1.

View Article and Find Full Text PDF

Junctions between the ER and the plasma membrane (ER/PM junctions) are implicated in calcium homeostasis, non-vesicular lipid transfer and other cellular functions. Two ER proteins that function both as membrane tethers to the PM via a polybasic motif in their C-terminus and as phospholipid transporters are brain-enriched TMEM24 (C2CD2L) and its paralog C2CD2. Based on an unbiased proximity ligation analysis, we found that both proteins can also form a complex with band 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57).

View Article and Find Full Text PDF

Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Colon cancer is a major global health issue, ranking as the third leading cause of cancer death, necessitating new therapeutic targets to combat tumor diversity and recurrence.* -
  • The study focused on ALDH1B1, a protein linked to colon cancer development, by decreasing its expression in colon cancer cells (SW480) and analyzing the effects through transcriptomics, proteomics, and metabolomics.* -
  • Results showed significant changes, with 357 genes, 191 proteins, and 891 metabolites affected, highlighting pathways involved in cell signaling, apoptosis, and metabolism, contributing valuable insights for future colon cancer research.*
View Article and Find Full Text PDF

Unlabelled: Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially due to subventricular zone (SVZ) contact. Despite this, crosstalk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood.

View Article and Find Full Text PDF

Background And Objectives: Epilepsy may result from various brain injuries, including stroke (ischemic and hemorrhagic), traumatic brain injury, and infections. Identifying shared common biological pathways and biomarkers of the epileptogenic process initiated by the different injuries may lead to novel targets for preventing the development of epilepsy. We systematically reviewed biofluid biomarkers to test their association with the risk of post-brain injury epilepsy.

View Article and Find Full Text PDF

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions and data acquisition techniques, significantlyimpacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of proteomics research, but current methods are not optimal for removal of batch effects without compressing the genuine biological variation under study.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD.

View Article and Find Full Text PDF

Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability.

View Article and Find Full Text PDF

Substance use disorders are associated with disruptions in sleep and circadian rhythms that persist during abstinence and may contribute to relapse risk. Repeated use of substances such as psychostimulants and opioids may lead to significant alterations in molecular rhythms in the nucleus accumbens (NAc), a brain region central to reward and motivation. Previous studies have identified rhythm alterations in the transcriptome of the NAc and other brain regions following the administration of psychostimulants or opioids.

View Article and Find Full Text PDF