We employed Density Functional Theory (DFT) to investigate the electronic, magnetic, and optical characteristics of armchair graphene nanoribbons (AGNRs) decorated with neptunium (Np) and plutonium (Pu). Our analysis delves deeply into the intricate orbital hybridizations associated with C-Np, C-Pu, C-C, Np-Np, and Pu-Pu chemical bonds. Through this approach, we explore the electronic band structure, band-decomposed charge densities, spin-charge distributions, and Van Hove singularities in the density of states.
View Article and Find Full Text PDFThis work deals with nickel electronucleation and growth processes onto a glassy carbon electrode from NiCl·6HO dissolved in ethylene glycol (EG) solutions with and without 250 mM NaCl as a supporting electrolyte. The physicochemical properties of EG solutions, namely, viscosity and conductivity, were determined for different Ni(II) concentrations. From cyclic voltammetry, it was found that in the absence of the supporting electrolyte, the cathodic efficiency of Ni electrodeposition is about 88%; however, in the presence of the supporting electrolyte, the cathodic efficiency was reduced to 26% due to water (added along the supporting electrolyte) reduction on the growing surfaces of Ni nuclei.
View Article and Find Full Text PDFThis paper presents a novel physical⁻mathematical model to describe the relationship between the crystallographic texture and corrosion behavior of American petroleum institute (API) 5L steels. Symmetric spherical harmonic functions were used to estimate the material's corrosion resistance from crystallographic texture measurements. The predictions of the average corrosion resistance index made from the crystallographic texture were in good agreement with those obtained from potentiodynamic polarization and electrochemical impedance spectroscopy measurements for the studied steels.
View Article and Find Full Text PDF