The precise relationship between epigenetic alterations and telomere dysfunction is still an extant question. Previously, we showed that eroded telomeres lead to differentiation instability in murine embryonic stem cells (mESCs) via DNA hypomethylation at pluripotency-factor promoters. Here, we uncovered that telomerase reverse transcriptase null () mESCs exhibit genome-wide alterations in chromatin accessibility and gene expression during differentiation.
View Article and Find Full Text PDFNormal human stem cells rely on low levels of active telomerase to sustain their high replicative requirements. Deficiency in telomere maintenance mechanisms leads to the development of premature aging diseases, such as dyskeratosis congenita and aplastic anemia. Mutations in the unique "insertion in fingers domain" (IFD) in the human telomerase reverse transcriptase catalytic subunit (hTERT) have previously been identified and shown to be associated with dyskeratosis congenita and aplastic anemia.
View Article and Find Full Text PDFIn most human cancer cells, cellular immortalization relies on the activation and recruitment of telomerase to telomeres. The telomere-binding protein TPP1 and the TEN domain of the telomerase catalytic subunit TERT regulate telomerase recruitment. TERT contains a unique domain, called the insertion in fingers domain (IFD), located within the conserved reverse transcriptase domain.
View Article and Find Full Text PDFShort, repetitive, G-rich telomeric sequences are synthesized by telomerase, a ribonucleoprotein consisting of telomerase reverse transcriptase (TERT) and an integrally associated RNA. Human TERT (hTERT) can repetitively reverse transcribe its RNA template, acting processively to add multiple telomeric repeats onto the same substrate. We investigated whether certain threshold levels of telomerase activity and processivity are required to maintain telomere function and immortalize human cells with limited lifespan.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein consisting of a catalytic subunit, the telomerase reverse transcriptase (TERT), and an integrally associated RNA that contains a template for the synthesis of short repetitive G-rich DNA sequences at the ends of telomeres. Telomerase can repetitively reverse transcribe its short RNA template, acting processively to add multiple telomeric repeats onto the same DNA substrate. The contribution of enzyme processivity to telomere length regulation in human cells is not well characterized.
View Article and Find Full Text PDF