Publications by authors named "Tsuyoshi Waku"

The ubiquitin‒proteasome system (UPS) and autophagy are the two primary cellular pathways of misfolded or damaged protein degradation that maintain cellular proteostasis. When the proteasome is dysfunctional, cells compensate for impaired protein clearance by activating aggrephagy, a type of selective autophagy, to eliminate ubiquitinated protein aggregates; however, the molecular mechanisms by which impaired proteasome function activates aggrephagy remain poorly understood. Here, we demonstrate that activation of aggrephagy is transcriptionally induced by the transcription factor NRF1 (NFE2L1) in response to proteasome dysfunction.

View Article and Find Full Text PDF

Cancer cells coordinate the mTORC1 signals and the related metabolic pathways to robustly and rapidly grow in response to nutrient conditions. Although a CNC-family transcription factor NRF3 promotes cancer development, the biological relevance between NRF3 function and mTORC1 signals in cancer cells remains unknown. Hence, we showed that NRF3 contributes to cancer cell viability through mTORC1 activation in response to amino acids, particularly arginine.

View Article and Find Full Text PDF

Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade.

View Article and Find Full Text PDF

Tumor tissue includes cancer cells and their associated stromal cells, such as adipocytes, myocytes, and immune cells. Obesity modulates tumor microenvironment through the secretion of several inflammatory mediators by inducing adipogenesis and myogenesis. Previously, we indicated that tumor growth is promoted by a transcription factor nuclear factor erythroid 2-related factor 3 (NRF3) in human cancer cells.

View Article and Find Full Text PDF

NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress.

View Article and Find Full Text PDF

Lipids, such as cholesterol and fatty acids, influence cell signaling, energy storage, and membrane formation. Cholesterol is biosynthesized through the mevalonate pathway, and aberrant metabolism causes metabolic diseases. The genetic association of a transcription factor NRF3 with obesity has been suggested, although the molecular mechanisms remain unknown.

View Article and Find Full Text PDF

Proteasomes are protease complexes essential for cellular homeostasis, and their activity is crucial for cancer cell growth. However, the mechanism of how proteasome activity is maintained in cancer cells has remained unclear. The CNC family transcription factor NFE2L1 induces the expression of almost all proteasome-related genes under proteasome inhibition.

View Article and Find Full Text PDF

Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap 'n' collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins.

View Article and Find Full Text PDF

The emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet.

View Article and Find Full Text PDF

Accumulating evidence has revealed that human cancers develop by sequentially mutating pivotal genes, including driver genes, and acquiring cancer hallmarks. For instance, cancer cells are addicted to the transcription factor NRF2 (NFE2L2), which is a driver gene that utilizes the cellular cytoprotection system against oxidative stress and metabolic pathway reprogramming for sustaining high growth. Our group has recently discovered a new addiction to the NRF2-related factor NRF3 (NFE2L3) in cancer.

View Article and Find Full Text PDF

Remarkable upregulation of the NRF2 (NFE2L2)-related transcription factor NRF3 (NFE2L3) in several cancer tissues and its correlation with poor prognosis strongly suggest the physiological function of NRF3 in tumors. Indeed, we had recently uncovered the function of NRF3, which promotes cancer cell proliferation by p53 degradation via the 20S proteasome. Nevertheless, the molecular mechanism underlying the induction of gene expression in cancer cells is highly elusive.

View Article and Find Full Text PDF

Mouse embryonic stem cells (ESCs) are pluripotent stem cells, which have the ability to differentiate into all three germ layers: mesoderm, endoderm, and ectoderm. Proper levels of phosphorylated extracellular signal-regulated kinase (pERK) are critical for maintaining pluripotency, as elevated pERK evoked by fibroblast growth factor (FGF) receptor activation results in differentiation of ESCs, while, conversely, reduction of pERK by a MEK inhibitor maintains a pluripotent ground state. However, mechanisms underlying proper control of pERK levels in mouse ESCs are not fully understood.

View Article and Find Full Text PDF

Accumulated evidence suggests a physiological relationship between the transcription factor NRF3 (NFE2L3) and cancers. Under physiological conditions, NRF3 is repressed by its endoplasmic reticulum (ER) sequestration. In response to unidentified signals, NRF3 enters the nucleus and modulates gene expression.

View Article and Find Full Text PDF

The inner cell mass of the mouse blastocyst gives rise to the pluripotent epiblast (EPI), which forms the embryo proper, and the primitive endoderm (PrE), which forms extra-embryonic yolk sac tissues. All inner cells coexpress lineage markers such as and at embryonic day (E) 3.25, and the EPI and PrE precursor cells eventually segregate to exclusively express and , respectively.

View Article and Find Full Text PDF

The transcription factor Nrf1 (NFE2L1) maintains protein homeostasis (proteostasis) by regulating the gene expression of proteasome subunits in response to proteasome inhibition. The deletion of the Nrf1 gene in neural stem/progenitor cells causes severe neurodegeneration due to the accumulation of ubiquitinated proteins in Purkinje cells and motor neurons (Nrf1 NKO mice). However, the molecular mechanisms governing this neurodegenerative process remain unclear.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) disrupts mineral homeostasis and its representative pathosis is defined as secondary hyperparathyroidism (SHPT). SHPT occurs during the early course of progressive renal insufficiency, and is associated with mortality and cardiovascular events. SHPT results in reduction of calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) in the parathyroid glands during CKD.

View Article and Find Full Text PDF

The active metabolite of vitamin D3 , 1α,25-dihydroxyvitamin D3 , acts as a ligand for the vitamin D receptor (VDR) and activates VDR-mediated gene expression. Recently, we characterized 1α,25-dihydroxyvitamin D3 -26,23-lactams (DLAMs), which mimic vitamin D3 metabolites, as noncalcemic VDR ligands that barely activate the receptor. In this study, we present structural insights onto the regulation of VDR function by DLAMs.

View Article and Find Full Text PDF

The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear.

View Article and Find Full Text PDF

Ribosomal RNAs (rRNAs) act as scaffolds and ribozymes in ribosomes, and these functions are modulated by post-transcriptional modifications. However, the biological role of base methylation, a well-conserved modification of rRNA, is poorly understood. Here, we demonstrate that a nucleolar factor, nucleomethylin (NML; also known as RRP8), is required for the N(1)-methyladenosine (m(1)A) modification in 28S rRNAs of human and mouse cells.

View Article and Find Full Text PDF

Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells.

View Article and Find Full Text PDF

Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth.

View Article and Find Full Text PDF

Ribosome biosynthesis is a major intracellular energy-consuming process. We previously identified a nucleolar factor, nucleomethylin (NML), which regulates intracellular energy consumption by limiting rRNA transcription. Here, we show that, in livers of obese mice, the recruitment of NML to rRNA gene loci is increased to repress rRNA transcription.

View Article and Find Full Text PDF

Tetramerization of p53 is crucial to exert its biological activity, and nucleolar disruption is sufficient to activate p53. We previously demonstrated that nucleolar stress induces translocation of the nucleolar protein MYBBP1A from the nucleolus to the nucleoplasm and enhances p53 activity. However, whether and how MYBBP1A regulates p53 tetramerization in response to nucleolar stress remain unclear.

View Article and Find Full Text PDF

The TGF-β superfamily comprises pleiotropic cytokines that regulate SMAD and non-SMAD signaling. TGF-β-SMAD signal transduction is known to be involved in tissue fibrosis, including renal fibrosis. Here, we found that 1,25-dihydroxyvitamin D3-bound [1,25(OH)2D3-bound] vitamin D receptor (VDR) specifically inhibits TGF-β-SMAD signal transduction through direct interaction with SMAD3.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session28pjrloe2kvfbp8la3qqvr03bkhl2dkh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once