Copper(I) oxide nanocubes were wrapped with an extremely uniform organic layer grown by self-controlled, Cu-mediated catalysis. This layer aided in retaining the initial cubic structure of the copper nanocubes during their use as a CO reduction electrocatalyst, resulting in high CO reduction selectivity by strong suppression of hydrogen evolution because of exclusion of water from the surface.
View Article and Find Full Text PDFCopper alkynyl complexes [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]+ (Ar = Ph, p-C6H4Me), in which three Ag(PPh3) units are bound among three C[triple bond, length as m-dash]CAr arms of trigonal-planar [Cu(C[triple bond, length as m-dash]CAr)3]2-, were selected as a protecting unit to cover the metal core of an atomically precise core-shell-type cluster. First, the formation of the protecting unit through the reaction of Cu(NCMe)4(PF6) with Ag(C[triple bond, length as m-dash]CAr) and PPh3 in a 1 : 3 : 3 ratio was confirmed. The reaction gave dimeric [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]22+, in which the two planar [CuAg3(C[triple bond, length as m-dash]CAr)3(PPh3)3]+ units were stacked.
View Article and Find Full Text PDFIn this study, organic structures were introduced onto copper cathodes to induce changes in their electrocatalytic CO reduction activity. Poorly soluble organic polymers were distributed onto the copper surface as a thin layer by polymerizing monomeric precursors a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) activated by anodization of the copper substrate. The resulting structure possesses copper surface atoms that are available to participate in the CO reduction reaction-comparable to close-contact organic structures-and stabilize the adsorption of organic layers through the CO reduction process.
View Article and Find Full Text PDFA bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge.
View Article and Find Full Text PDFFive eudesmane-type sesquiterpene glycosides, named sonneratiosides A-E (1-5), were isolated from the leaves of Sonneratia alba (Lythraceae). The aglycone of sonneratioside A was identified as cryptomeridiol also known as proximadiol. X-ray crystallographic analysis of sonneratioside A confirmed its structure and its absolute stereochemistry.
View Article and Find Full Text PDFTwo novel chloride-centered Ag clusters with the same framework but different supporting phosphines are synthesized by the reaction of PhC[triple bond, length as m-dash]CAg, AgSbF, PPh (or P(p-Tol)), and NaBH in CHCl, followed by the addition of PhC[triple bond, length as m-dash]CH and NEt. The inner twelve Ag atoms of these two clusters are arranged in a rare cuboctahedral structure, which can be rationalized by considering a ligand effect. Through careful analysis, we find that the central chloride arises from a generally ignored but nonetheless existing reaction between CHCl and NEt, which is well recognized as the Menshutkin reaction.
View Article and Find Full Text PDFThe "staple motif" has been widely applied to depict and predict the structures of thiolate or alkynyl-protected gold nanoclusters. By contrast, the composition, dimensions, configuration, and functionality of the platinum-ligand motif has remained completely unknown. Herein, we report the synthesis and crystal structure of a novel luminescent Pt Ag (C≡CPh) (1) cluster, in which two-dimensional and two-functional alkynyl-platinum "crucifix motif" was observed.
View Article and Find Full Text PDFThe synthesis and structure determination of an alkynyl-protected Pt-doped Ag superatom nanocluster, [PtAg (C≡CC H CH ) ](SbF ) (1), are reported. The metallic core of this cluster can be viewed as a concentric three-shell Russian doll comprising Pt@Ag @Ag , in which the missing icosidodecahedral Ag shell and a new structural unit, M , have been observed. On the surface of 1, 28 alkynyl groups and 4 SbF anions were found co-protecting it.
View Article and Find Full Text PDFThe trivalent phosphorus-bridged [2]ferrocenophane complex 2 having NEt groups on the respective phosphorus centers was prepared, and its reactions as a diphosphine ligand were examined for iron and chromium carbonyl complexes. Both the phosphorus centers of 2 coordinated to Fe(CO) fragments to form (μ-2)-[Fe(CO)], while the bulkier Cr(CO) fragment formed only a monochromium complex [Cr(κ-2)(CO)]. Dissociation of CO from [Cr(κ-2)(CO)] changed the coordination mode of 2 from κ to κ to form [Cr(κ-2)(CO)] having a three-membered ring.
View Article and Find Full Text PDFThree aromatic glycosides (1-3), two sulfur and nitrogen-containing compound glucosides (4, 5), and one flavonoid glycoside (6) were isolated from the leaves of Ixora undulata. Their structures were established by extensive 1D, 2D NMR, and HRESIMS experiments, and structure 4 was further confirmed by single crystal X-ray diffraction analysis. Of the assayed compounds, 7, 11 and 12 showed strong inhibitory activity toward advanced glycation end-products formation with IC50 values of 86.
View Article and Find Full Text PDFBoth α1- and α2-isomers of mono-Ru-substituted Dawson-type heteropolytungstates with a DMSO ligand, [α1-P2W17O61Ru(II)(DMSO)](8-) and [α2-P2W17O61Ru(II)(DMSO)](8-), are prepared from the α2-isomer of a monolacunary derivative, [α2-P2W17O61](10-). Reaction of [α2-P2W17O61](10-) with Ru(DMSO)4Cl2 under hydrothermal conditions produces [α2-P2W17O61Ru(II)(DMSO)](8-) as a main product together with [α1-P2W17O61Ru(II)(DMSO)](8-), [PW11O39Ru(II)(DMSO)](5-), and [P2W18O62](6-) as byproducts. By addition of KCl to the reaction mixture, K8[α2-P2W17O61Ru(II)(DMSO)] is isolated in a moderate yield.
View Article and Find Full Text PDFKinetic stabilization and reactivity of π single-bonded species have been investigated in detail by generating a series of singlet 2,2-dialkoxy-1,3-diphenyloctahydropentalene-1,3-diyls (DRs). The lifetime at 293 K in benzene was found to increase when the carbon chain length of the alkoxy groups was increased; 292 ns (DRb; OR = OR' = OCH3) <880 ns (DRc; OR = OR' = OC2H5) <1899 ns (DRd; OR = OR' = OC3H7) ≈2292 ns (DRe; OR = OR' = OC6H13) ≈2146 ns (DRf; OR = OR' = OC10H21). DRh (OR = OC3H7, OR' = OCH3; 935 ns) with the mixed-acetal moiety is a longer-lived species than another diastereomer DRg (OR = OCH3, OR' = OC3H7; 516 ns).
View Article and Find Full Text PDFThe acid-catalyzed condensation reaction of resorcinol and bisdimethoxyacetals gave rise to rim-to-rim connected bisresorcinarenes in good yields. In the presence of ethanol, the homoditopic bisresorcinarenes assembled to form supramolecular polymers via hydrogen bonding interactions. The fibrous morphologies of the supramolecular polymers were confirmed by atomic force microscopy and scanning electron microscopy.
View Article and Find Full Text PDFBeilstein J Org Chem
February 2011
Furan-2-ylmethyl 2-oxoacetates 1a,b, in which the furan ring and the carbonyl moiety were embedded intramolecularly, were synthesized from commercially available furan-2-ylmethanol and their photochemical reaction (hν > 290 nm) was investigated. Twelve-membered macrocyclic lactones 2a,b with C(i) symmetry including two oxetane-rings, which are the Paternò-Büchi dimerization products, were isolated in ca. 20% yield.
View Article and Find Full Text PDFA large-hole tetraphosphamacrocycle 2, with four phosphorus centers separated at the corners of a 3.7 A wide and 9.7 A long rectangle, was synthesized by a stepwise cyclization reaction between PCl-bridged [1.
View Article and Find Full Text PDFA cobalt complex, [CoCl2(dpph)] (DPPH = [1,6-bis(diphenylphosphino)hexane]), catalyzes an intermolecular styrylation reaction of alkyl halides in the presence of Me3SiCH2MgCl in ether to yield beta-alkylstyrenes. A variety of alkyl halides including alkyl chlorides can participate in the styrylation. A radical mechanism is strongly suggested for the styrylation reaction.
View Article and Find Full Text PDFA reaction mechanism was investigated for a ring-opening reaction of RP(E)-bridged [1]ferrocenophane, where RP(E) = PhP(S) (3a), PhP (3b), and MesP (3c) (Mes = 2,4,6-trimethylphenyl). Irradiation of UV-vis light in the presence of an excess amount of P(OMe)(3) transformed 3a to [Fe(PhP(S)(eta(5)-C(5)H(4))(eta(1)-C(5)H(4)))(P(OMe)(3))(2)] (4a), in which one of the two cyclopentadienyl (Cp) rings of 3a changed its coordination mode from eta(5) to eta(1) and vacant coordination sites thus formed on the iron center were occupied by two P(OMe)(3) ligands. The molecular structure of 4a was determined by X-ray analysis, in which eta(1)-Cp adopted a 1-Fe-2-P-1,3-cyclopentadiene structure.
View Article and Find Full Text PDF